Многоугольник изображенный на рисунке называют снежинкой коха. Кривая коха


Тема: Фракталы.

1.Введение. Краткая историческая справка о фракталах. 2.Фракталы – элементы геометрии в природе.

3.Объекты, обладающие фрактальными свойствами, в природе. 4.Определение терминологии «фракталы».

5.Классы фракталов.

6.Описание фрактальных процессов. 7.Процедуры получения фрактальных множеств.

8.1 Ломаная Коха (процедура получения).

8.2 Снежинка Коха (Фрактал Коха).

8.3 Губки Менгера.

9. Примеры применения фракталов.

Введение. Краткая историческая справка о фракталах.

Фракталы – молодой раздел дискретной математики.

В 1904 году швед Кох придумал непрерывную кривую, которая нигде не имеет касательной – кривая Коха.

В 1918 году француз Жюлиа описал целое семейство фракталов.

В 1938 году Пьер Леви опубликовал статью «Плоские и пространственные кривые и поверхности, состоящие из частей, подобных целому».

В 1982 Бенуа Мандельброта опубликовал книгу «Фрактальная геометрия природы».

С помощью простых конструкций и формул получаются изображения. Появилась «фрактальная живопись».

С 1993 г. Из-во World Scientific издаёт журнал «Фракталы».

Фракталы – элементы геометрии в природе.

Фракталы - средства для описания таких объектов как модели горных хребтов, изрезанной береговой линии, систем кровообращения множества капилляров и сосудов, кроны деревьев, каскадных водопадов, морозные узоры на стекле.

Или такие: лист папоротника, облака, клякса.

Изображения таких предметов можно представить с помощью фрактальной графики.

Объекты, обладающие фрактальными свойствами, в природе.

КораллыМорские звезды и ежиМорские раковины

Цветы и растения (брокколи , капуста )Плоды (ананас )

Кроны деревьев и листья растений Кровеносная система и бронхи людей и животных В неживой природе:

Границы географических объектов (стран, областей, городов)Береговые линии Горные хребты Снежинки Облака Молнии

Образующиеся на стеклах узорыКристаллы Сталактиты, сталагмиты , геликтиты .

Определение терминологии «фракталы».

Фракталы - это геометрические фигуры, которые удовлетворяют одному или нескольким из следующих свойств:

Обладает сложной нетривиальной структурой при любом увеличении (на всех масштабах);Является (приближённо) самоподобной.

Обладает дробной хаусдорфовой (фрактальной) размерностью или превосходящей топологическую;Может быть построена рекурсивными процедурами.

Для регулярных фигур таких, как окружность , эллипс , график гладкой функции небольшой фрагмент в очень крупном масштабе похож на фрагмент прямой. Для фрактала увеличение масштаба не ведёт к упрощению структуры, для всех масштабов мы увидим одинаково сложные картины.

Классы фракталов

Фрактал – структура, состоящая из частей (субструктур), подобных целому.

Часть фракталов, как элементов природы, можно отнести к классу геометрических (конструктивных) фракталов.

Остальная часть может быть отнесена к классу динамических фракталов (алгебраических).

Процедуры получения фрактальных множеств.

Это простая рекурсивная процедура получения фрактальных кривых: задают произвольную ломаную с конечным числом звеньев – генератор. Далее, заменяют в ней каждый отрезок генератор. Затем вновь заменяют в ней каждый отрезок генератором и так до бесконечности.

Изображено: деление единичного отрезка на 3 части (а), единичной квадратной площадки на 9 частей (б), единичного куба на 27 частей (в) и на 64 части (г). Число частей n, коэффициент масштабирования - k, а размерность пространства - d. Имеем следующие соотношения: n = kd,

если n = 3, k = 3, то d = 1; если n = 9, k = 3, то d = 2; если n = 27, k = 3, то d = 3.

если n = 4, k = 4, то d = 1; если n = 16, k = 4, то d = 2; если n = 64, k = 4, то d = 3. Размерность пространства выражается целыми числами: d = 1, 2, 3; для n = 64, величина d равна

Показано пять шагов построения ломаной Коха: отрезок единичной длины (а), делится на три части (k = 3), из четырех частей (n = 4) – ломаная (б); каждый прямой отрезок делится на три части (k2 = 9) и из 16 частей (n2 = 16) – ломаная (в); процедура повторяется для k3 = 27 и n3 = 64 – ломаная (г); для k5 = 243 и n5 = 1024 – ломаную (д).

Размерность

Это дробная, или фрактальная размерность.

Ломаная Коха, предложенная Гельгом фон Кохом в 1904 г., выступает в роли фрактала, который подходит для моделирования изрезанности береговой линии. Мандельброт в алгоритм построения береговой линии внес элемент случайности, который, однако, не повлиял на основной вывод в отношении длины береговой линии. Поскольку предел

длина береговой линии за счет бесконечной изрезанности берега стремится к бесконечности.

Процедура сглаживания береговой линии при переходе от более детального масштаба к менее детальному, т.е.

Снежинка Коха (фрактал Коха)

В Качестве основы построения можно брать не отрезки единичной длины, а равносторонний треугольник, на каждую сторону которого распространить процедуру умножения изрезанности. В этом случае получим снежинку Коха (рис.), причем трех видов: вновь образующиеся треугольники направлены только наружу от предыдущего треугольника (а) и (б); только внутрь (в); случайным образом либо наружу, либо внутрь (г) и (д). Как можно задавать процедуру построения фрактала Коха.

Рис. Снежинка Коха

На рис. показаны две векторные диаграммы; числа, стоящие над стрелками, видимо, вызовут вопрос: что бы они значили? Вектор 0 совпадает с положительным направлением оси абсцисс, так как его фазовый множитель exp (i2πl/6) при l = 0 сохраняет его направление. Вектор 1 повернут относительно вектора 0 на угол 2π/6, когда l= 1. Вектор 5 имеет фазовый множитель exp (i2π5/6), l = 5. Последний вектор имеет тот же фазовый множитель, что и первый (l = 0). Целые числа l характеризуют угол фазового множителя единичного вектора.

Первый шаг (рис.), задает рекурсивную процедуру для всех последующих шагов и, в частности, для второго шага (рис.). Как перейти от набора чисел φ1 = {0 1 5 0} к φ2 = {0 1 5 0 1 2 0 1 5 0 4 5 0 1 5 0}? Ответ: через прямое перемножение матриц, когда каждый элемент одной матрицы умножается на исходную матрицу. Поскольку в данном случае мы имеем дело с одномерным массивом, т.е. матрицы представляют собой векторы, то здесь производится умножение каждого элемента одной матрицы-вектора на все элементы другой матрицы-вектора. Кроме того, элементы матрицы-вектора φ1 состоят из показательных функций exp (i2πl/6), следовательно,10 при перемножении числа h нужно будет складывать по mod (6), а не умножать.

Снежинка Коха

В начале ХХ века математики искали такие кривые, которые ни в одной точке не имеют касательной. Это означало, что кривая резко меняет свое направление, и притом с колоссально большой скоростью (производная равна бесконечности). Поиски данных кривых были вызваны не просто праздным интересом математиков. Дело в том, что в начале ХХ века очень бурно развивалась квантовая механика. Исследователь М.Броун зарисовал траекторию движения взвешенных частиц в воде и объяснил это явление так: беспорядочно движущиеся атомы жидкости ударяются о взвешенные частицы и тем самым приводят их в движение. После такого объяснения броуновского движения перед учеными встала задача найти такую кривую, которая бы наилучшим образом аппроксимировала движение броуновских частиц. Для этого кривая должна была отвечать следующим свойствам: не иметь касательной ни в одной точке. Математик Кох предложил одну такую кривую. Мы не будем вдаваться в объяснения правила ее построения, а просто приведем ее изображение, из которого все станет ясно (рис.1.1.1).

Рис 1.1.1. Снежинка Коха.

Одно важное свойство, которым обладает граница снежинки Коха --- ее бесконечная длина. Это может показаться удивительным, потому что мы привыкли иметь дело с кривыми из курса математического анализа. Обычно гладкие или хотя бы кусочно-гладкие кривые всегда имеют конечную длину (в чем можно убедиться интегрированием). Мандельброт в этой связи опубликовал ряд увлекательных работ, в которых исследуется вопрос об измерении длины береговой линии Великобритании. В качестве модели он

Рис. 1.1.2. Построение снежинки Коха.


использовал фрактальную кривую, напоминающую границу снежинки за тем исключением, что в нее введен элемент случайности, учитывающий случайность в природе. В результате оказалось, что кривая, описывающая береговую линию, имеет бесконечную длину.

Салфетка и ковёр Серпинского

Еще один пример простого самоподобного фрактала --- салфетка Серпинского (рис. 1.2.1), придуманный польским математиком Вацлавом Серпинским в 1915 году. Сам термин салфетка принадлежит Мандельброту. В способе построения, следующем ниже, мы начинаем с некоторой области и последовательно выбрасываем внутренние подобласти. Позднее мы рассмотрим и другие способы, в частности с использованием L-систем, а также на основе итерированных функций.

Рис 1.2.1. Салфетка Серпинского

Пусть начальное множество S 0 --- равносторонний треугольник вместе с областью, которую он замыкает. Разобьем S 0 на четыре меньшие треугольные области, соединив отрезками середины сторон исходного треугольника. Удалим внутренность маленькой центральной треугольной области. Назовем оставшееся множество S 1 (рис. 1.2.2). Затем повторим процесс для каждого из трех оставшихся маленьких треугольников и получим следующее приближение S 2 . Продолжая таким образом, получим последовательность вложенных множеств S n , чье пересечение образует салфетка S.

Рис. 1.2.2. Построение салфетки Серпинского


Очевидно, что суммарная площадь частей, выкинутых при построении, в точности равна площади исходного треугольника. На первом шаге мы выбросили ј часть площади. На следующем шаге мы выбросили три треугольника, причем площадь каждого равна ј 2 площади исходного. Рассуждая таким образом, мы убеждаемся, что полная доля выкинутой площади составила:

1/4 + 3 * (1/4 2) + 3 2 * (1/4 3) + … + 3 n-1 * (1/4 n) + … .

Эта сумма равна. Следовательно, мы можем утверждать, что оставшееся множество S, то есть салфетка, имеет площадь меры нуль. Это выделяет множество S в разряд «совершенного», в том смысле, что оно разбивает свое дополнение на бесконечное число треугольных областей, обладая при этом нулевой толщиной.

Ковер Серпинского считается еще одной моделью фрактала. Строится он следующим образом: берется квадрат, делится на девять квадратов, вырезается центральный квадрат. Затем с каждым из восьми оставшихся квадратов проделывается подобная процедура. И так до бесконечности. В результате вместо целого квадрата мы получаем ковер со своеобразным симметричным рисунком. Впервые данную модель предложил математик Серпинский, в честь которого он и получил свое название. Пример ковра Серпинского можно увидеть на рис. 1.2.3.

Эта фигура - один из первых исследованных учеными фракталов. Она получается из трех копий кривой Коха, которая впервые появилась в статье шведского математика Хельге фон Коха в 1904 году. Эта кривая была придумана как пример непрерывной линии, к которой нельзя провести касательную ни в одной точке. Линии с таким свойством были известны и раньше (Карл Вейерштрасс построил свой пример еще в 1872 году), но кривая Коха замечательна простотой своей конструкции. Не случайно его статья называется «О непрерывной кривой без касательных, которая возникает из элементарной геометрии».

Как по шагам строится кривая Коха.

Первая итерация - просто начальный отрезок. Потом он делится на три равные части, центральная достраивается до правильного треугольника и затем выкидывается. Получается вторая итерация - ломаная линия, состоящая из четырех отрезков. К каждому из них применяется такая же операция, и получается четвертый шаг построения. Продолжая в том же духе, можно получать всё новые и новые линии (все они будут ломаными). А то, что получится в пределе (это уже будет воображаемый объект), и называется кривой Коха.

Основные свойства кривой Коха

1.О на непрерывна, но нигде не дифференцируема. Грубо говоря, именно для этого она и была придумана - как пример такого рода математических «уродцев».

2. Имеет бесконечную длину. Пусть длина исходного отрезка равна 1. На каждом шаге построения мы заменяем каждый из составляющих линию отрезков на ломаную, которая в 4/3 раза длиннее. Значит, и длина всей ломаной на каждом шаге умножается на 4/3 : длина линии с номером n равна (4/3)n–1 . Поэтому предельной линии ничего не остается, кроме как быть бесконечно длинной.

3. Снежинка Коха ограничивает конечную площадь. И это при том, что ее периметр бесконечен. Это свойство может показаться парадоксальным, но оно очевидно - снежинка полностью помещается в круг, поэтому ее площадь заведомо ограничена. Площадь можно посчитать, и для этого даже не нужно особых знаний - формулы площади треугольника и суммы геометрической прогрессии проходят в школе. Для интересующихся вычисление приведено ниже мелким шрифтом.

Пусть сторона исходного правильного треугольника равна a. Тогда его площадь. Сначала сторона равна 1, а площадь: . Что происходит при увеличении итерации? Можно считать, что к уже имеющемуся многоугольнику пристраиваются маленькие равносторонние треугольнички. В первый раз их всего 3, а каждый следующий раз их в 4 раза больше чем было в предыдущий. То есть на n-м шаге будет достроено Tn = 3 · 4n–1 треугольничков. Длина стороны каждого из них составляет треть от стороны треугольника, достроенного на предыдущем шаге. Значит, она равна (1/3)n. Площади пропорциональны квадратам сторон, поэтому площадь каждого треугольничка равна . При больших значениях n это, кстати, очень мало. Суммарный вклад этих треугольничков в площадь снежинки равен Tn · Sn = 3/4 · (4/9)n · S0 . Поэтому после n-го шага площадь фигуры будет равна сумме S0 + T1 · S1 + T2 · S2 + ... +Tn · Sn = . Снежинка получается после бесконечного числа шагов, что соответствует n → ∞ . Получается бесконечная сумма, но это сумма убывающей геометрической прогрессии, для нее есть формула: . Площадь снежинки равна .


Варианты построения снежинки Коха

Снежинка Коха «наоборот» получается, если строить кривые Коха внутрь исходного равностороннего треугольника.

Линии Чезаро. Вместо равносторонних треугольников используются равнобедренные с углом при основании от 60° до 90°. На рисунке угол равен 88°.


Квадратный вариант. Тут достраиваются квадраты.

Фрактальная снежинка - один из самых известных и загадочных геометрических объектов - описана Хельгой фон Кох еще в начале нашего века. По традиции ее называют у нас в литературе снежинкой Коха. Это очень "колючая" геометрическая фигура, которую метафорически можно рассматривать как результат многократного "умножения" звезды Давида на саму себя. Шесть ее основных лучей покрыты бесконечным количеством больших и малых вершин-"иголочек". Всякий микроскопический фрагмент контура снежинки как две капли воды похож на весь большой луч, а большой луч в свою очередь содержит в себе бесконечное количество таких же микроскопических фрагментов.

На международном симпозиуме по методологии математического моделирования в Варне еще в 1994 году мне на глаза попалась работа болгарских авторов, которые описывали свой опыт использования снежинки Коха и других подобных объектов на уроках в старших классах для иллюстрации проблемы делимости пространства и философских апорий Зенона. Помимо этого, с образовательной точки зрения весьма интересен, на мой взгляд, сам принцип построения регулярных фрактальных геометрических структур - принцип рекурсивного умножения базового элемента. Природа недаром "любит" фрактальные формы. Это объясняется именно тем, что они получаются путем простого размножения и изменения размеров некого одного элементарного строительного блока. Как известно, природа не излишествует разнообразием причин и, где возможно, обходится наиболее простыми алгоритмическими решениями. Присмотритесь внимательно к контурам листьев, и во многих случаях вы обнаружите явное их родство с формой контура снежинки Коха.

Визуализация фрактальных геометрических структур возможна лишь при помощи компьютера. Построить снежинку Коха выше третьего порядка вручную уже очень сложно, а заглянуть в бесконечность так хочется! Поэтому, почему бы ни попытаться разработать соответствующую компьютерную программу. В РуНете можно отыскать рекомендации строить снежинку Коха из треугольников. Результат работы этого алгоритма выглядит как нагромождение пересекающихся линий. Интереснее скомбинировать эту фигуру из "кусочков". Контур снежинки Коха состоит из отрезков одинаковой длины, наклоненных под углом 0°, 60° и 120° по отношению к горизонтальной оси x. Если обозначить их соответственно 1, 2 и 3, то снежинка любого порядка будет состоять из следующих друг за другом троек - 1, 2, 3, 1, 2, 3, 1, 2, 3… и т. д. Каждый из этих трех типов отрезков может прикрепляться к предыдущему одним либо другим концом. С учетом этого обстоятельства можно считать, что контур снежинки состоит из отрезков шести типов. Обозначим их 0, 1, 2, 3, 4, 5. Таким образом, мы получаем возможность кодировать контур любого порядка при помощи 6 цифр (см. рисунок).

Снежинка более высокого порядка получается из предшественницы более низкого порядка путем замены каждого ребра на четыре, соединенных подобно сложенным ладошкам (_/\_). Ребро типа 0 заменяется на четыре ребра 0, 5, 1, 0 и так далее в соответствии с таблицей:

0 0 1 5 0
1 1 2 0 1
2 2 3 1 2
3 3 4 2 3
4 4 5 3 4
5 5 0 4 5

Простой равносторонний треугольник можно рассматривать как снежинку Коха нулевого порядка. В описанной системе кодировки ему соответствует запись 0, 4, 2. Все остальное можно получить путем описанных замен. Я не буду приводить здесь код процедуры и тем самым лишать вас удовольствия разработать свою программу самостоятельно. При ее написании вовсе необязательно использовать явный рекурсивный вызов. Его можно заменить обычным циклом. В процессе работы у вас будет лишний повод поразмыслить о рекурсии и ее роли в образовании квазифрактальных форм окружающего нас мира, а в конце пути (если, конечно, не поленитесь пройти его до конца) вы сможете полюбоваться сложным узором контуров фрактальной снежинки, а также заглянуть, наконец, в лицо бесконечности.

Называемую снежинкой Коха .

Кривая Коха

Построение

Кривая Коха является типичным геометрическим фракталом. Процесс её построения выглядит следующим образом: берём единичный отрезок, разделяем на три равные части и заменяем средний интервал равносторонним треугольником без этого сегмента. В результате образуется ломаная, состоящая из четырёх звеньев длины 1/3. На следующем шаге повторяем операцию для каждого из четырёх получившихся звеньев и т. д… Предельная кривая и есть кривая Коха.

Свойства

Вариации и обобщения

Возможны обобщения кривой Коха, также использующие при построении подстановку ломаной из четырёх равных отрезков, но имеющей иную геометрию. Они имеют хаусдорфову размерность от 1 до 2. В частности, если вместо деления отрезка 1:1:1 использовать золотое сечение (φ:1:φ), то получившаяся кривая имеет отношение к мозаикам Пенроуза .

Также можно построить «Снежинку Коха» на сторонах равностороннего трегоугольника.

Вслед за подходом Коха были разработаны варианты с прямыми углами (квадратичная), других углов (Чезаро ) или кругов и их расширения на высшие размерности (сферическая снежинка):

Фрактал Cesaro

Квадратичная кривая 1-го типа

Первые 2 итерации

Квадратичная кривая 2-го типа

Первые 2 итерации. Фрактальная размерность 1,5 (точно посередине между размерностью 1 и 2), поэтому часто используется при изучении физических свойств нецелых фрактальных объектов

Поверхность Коха

Расширения кривой Коха на 3D (первые 3 итерации)

Квадратичная поверхность 1-го типа

Квадратичная поверхность (анимация)

Квадратичная поверхность 2-го типа

сферическая снежинка Хэйнса (большой зелёный объект)

Снежинка Коха

Снежинка Коха, построенная в виде замкнутой кривой на базе равностороннего треугольника , впервые была описана шведским математиком Хельге фон Кохом в 1904 году . В некоторых работах она получила название «остров Коха» .

Было доказано, что эта фрактальная кривая обладает рядом любопытных свойств. К примеру, длина её периметра равна бесконечности, что, однако, не мешает ему охватывать конечную площадь , величина которой равна 8/5 площади базового треугольника . Вследствие этого факта некоторые прикладные методики и параметры плоских фигур, такие как, например, краевой индекс (отношение периметра к корню из площади), при работе со снежинкой Коха оказываются неприменимыми .

Возможно также построение так называемой антиснежинки Коха, алгоритм генерирования которой заключается в вырезании на каждом этапе всё новых и новых треугольников из исходного. Иными словами рёбра базовой формы модифицируются внутрь, а не наружу. В результате полученная фигура охватывает бесконечное множество несвязанных областей, суммарная площадь которых равна 2/5 от площади треугольника нулевой итерации .

Примечания

Ссылки

L-система

L-система или система Линденмайера - это параллельная система переписывания и вид формальной грамматики. L-система состоит из алфавита символов, которые могут быть использованы для создания строк, набора порождающих правил, которые задают правила подстановки вместо каждого символа, начальной строки («аксиомы»), с которой начинается построение, и механизма перевода образованной строки в геометрические структуры. L-системы предложил и развивал в 1968 Аристид Линденмайер, венгерский биолог и ботаник из Утрехтского университета. Линденмайер использовал L-системы для описания поведения клеток растений и моделирования процесса развития растения. L-системы использовались также для моделирования морфологии различных организмов и могут быть использованы для генерации самоподобных фракталов, таких как системы итерируемых функций.

Конечное правило подразделения

В математике конечное правило подразделения - это рекурсивный способ деления многоугольника и других двумерных фигур на всё меньшие и меньшие части. Правила подразделения в этом смысле является обобщением фракталов. Вместо повторения одного и того же узора снова и снова здесь имеются небольшие изменения на каждом шаге, что позволяет получить более богатые структуры, сохраняя при этом поддержку элегантного стиля фракталов. Правила подразделения используются в архитектуре, биологии и информатике, а также при изучении гиперболических многообразий. Подстановки плиток являются хорошо изученным видом правил подразделения.

Кривая Пеано

Крива́я Пеа́но - общее название для параметрических кривых, образ которых содержит квадрат (или, в более общем смысле, открытые области пространства). Другое название - заполняющая пространство кривая.

Названа в честь Джузеппе Пеано (1858-1932), первооткрывателя такого рода кривых, в частном смысле кривой Пеано называется конкретная кривая, которую нашёл Пеано.

Кривая Серпинского

Кривые Серпинского - это рекурсивно определённая последовательность непрерывных замкнутых плоских фрактальных кривых, открытых Вацлавом Серпинским. Кривая в пределе при полностью заполняет единичный квадрат, так что предельная кривая, также называемая кривой Серпинского , является примером заполняющих пространство кривых.

Поскольку кривая Серпинского заполняет пространство, её размерность Хаусдорфа (в пределе при n → ∞ {\displaystyle n\rightarrow \infty } ) равна 2 {\displaystyle 2} .
Евклидова длина кривой

равна l n = 2 3 (1 + 2) 2 n − 1 3 (2 − 2) 1 2 n {\displaystyle l_{n}={2 \over 3}(1+{\sqrt {2}})2^{n}-{1 \over 3}(2-{\sqrt {2}}){1 \over 2^{n}}} ,

т. е. она растёт экпоненциально по n {\displaystyle n} , а предел при n → ∞ {\displaystyle n\rightarrow \infty } площади области, заключённой кривой S n {\displaystyle S_{n}} , составляет 5 / 12 {\displaystyle 5/12} квадрата (в Евклидовой метрике).

Размерность Минковского

Размерность Минковского или грубая размерность ограниченного множества в метрическом пространстве равна

lim ε → 0 ln ⁡ (N ε) − ln ⁡ (ε) {\displaystyle \lim \limits _{\varepsilon \to 0}{\frac {\ln(N_{\varepsilon })}{-\ln(\varepsilon)}}} ,

где - минимальное число множеств диаметра , которыми можно покрыть наше множество. Если предел не существует, то можно рассматривать верхний и нижний предел и говорить соответственно о верхней и нижней размерности Минковского.

Близким к размерности Минковского понятием является размерность Хаусдорфа. Во многих случаях эти размерности совпадают, хотя существуют множества, для которых они различны.

Теория хаоса

Тео́рия ха́оса - математический аппарат, описывающий поведение некоторых нелинейных динамических систем, подверженных при определённых условиях явлению, известному как хаос (динамический хаос, детерминированный хаос). Поведение такой системы кажется случайным, даже если модель, описывающая систему, является детерминированной. Для акцентирования особого характера изучаемого в рамках этой теории явления обычно принято использовать название теория динамического хаоса.

Примерами подобных систем являются атмосфера, турбулентные потоки, некоторые виды аритмий сердца, биологические популяции, общество как система коммуникаций и его подсистемы: экономические, политические, психологические (культурно-исторические и интер-культуральные) и другие социальные системы. Их изучение, наряду с аналитическим исследованием имеющихся рекуррентных соотношений, обычно сопровождается математическим моделированием.

Теория хаоса - область исследований, связывающая математику и физику.

Фрактал

Фракта́л (лат. fractus - дроблёный, сломанный, разбитый) - множество, обладающее свойством самоподобия (объект, в точности или приближённо совпадающий с частью себя самого, то есть целое имеет ту же форму, что и одна или более частей). В математике под фракталами понимают множества точек в евклидовом пространстве, имеющие дробную метрическую размерность (в смысле Минковского или Хаусдорфа), либо метрическую размерность, отличную от топологической, поэтому их следует отличать от прочих геометрических фигур, ограниченных конечным числом звеньев. Самоподобные фигуры, повторяющиеся конечное число раз, называются предфракталами.

Первые примеры самоподобных множеств с необычными свойствами появились в XIX веке в результате изучения непрерывных недифференцируемых функций (например, функция Больцано, функция Вейерштрасса, множество Кантора). Термин «фрактал» введён Бенуа Мандельбротом в 1975 году и получил широкую известность с выходом в 1977 году его книги «Фрактальная геометрия природы». Особую популярность фракталы обрели с развитием компьютерных технологий, позволивших эффектно визуализировать эти структуры.

Слово «фрактал» употребляется не только в качестве математического термина. Фракталом может называться предмет, обладающий, по крайней мере, одним из указанных ниже свойств:

Обладает нетривиальной структурой на всех масштабах. В этом отличие от регулярных фигур (таких как окружность, эллипс, график гладкой функции): если рассмотреть небольшой фрагмент регулярной фигуры в очень крупном масштабе, то он будет похож на фрагмент прямой. Для фрактала увеличение масштаба не ведёт к упрощению структуры, то есть на всех шкалах можно увидеть одинаково сложную картину.

Является самоподобным или приближённо самоподобным.

Обладает дробной метрической размерностью или метрической размерностью, превосходящей топологическую.Многие объекты в природе обладают свойствами фрактала, например: побережья, облака, кроны деревьев, снежинки, система кровообращения, альвеолы.

Фрактальная размерность

Фракта́льная разме́рность (англ. fractal dimension ) - один из способов определения размерности множества в метрическом пространстве. Фрактальную размерность n -мерного множества можно определить с помощью формулы:

D = − lim ε → 0 ln ⁡ (N ε) ln ⁡ (ε) {\displaystyle D=-\lim \limits _{\varepsilon \to 0}{\frac {\ln(N_{\varepsilon })}{\ln(\varepsilon)}}} , где N ε {\displaystyle N_{\varepsilon }} - минимальное число n -мерных «шаров» радиуса ε {\displaystyle \varepsilon } , необходимых для покрытия множества.

Фрактальная размерность может принимать не целое числовое значение.

Основная идея «дробной» (англ. fractured ) размерности имеет долгую историю в области математики, но именно сам термин введён в оборот Бенуа Мандельбротом в 1967 году в его статье о самоподобии, в которой он описал «дробную» (англ. fractional ) размерность. В этой статье Мандельброт ссылался на предыдущую работу Льюиса Фрайя Ричардсона, описывающую противоречащую здравому смыслу идею о том, что измеренная длина береговой линии зависит от длины мерной палки (шеста) (см. Рис. 1). Следуя этому представлению, фрактальная размерность береговой линии соответствует отношению числа шестов (в определенном масштабе), нужных для измерения длины береговой линии, к выбранному масштабу шеста. Есть несколько формальных математических определений [⇨] фрактальной размерности, которые строятся на этой базовой концепции, об изменении в элементе с изменением в масштабе.

Одним из элементарных примеров является фрактальная размерность снежинки Коха. Её топологическая размерность равна 1, но это ни в коем случае не спрямляемая кривая, поскольку длина кривой между любыми двумя точками снежинки Коха - бесконечность. Никакая сколько угодно малая часть кривой не является отрезком прямой. Скорее, снежинка Коха состоит из бесконечного числа сегментов, соединённых под разными углами. Фрактальную размерность кривой можно объяснить интуитивно, предполагая, что фрактальная линия - это объект слишком детальный (подробный), чтобы быть одномерным, но недостаточно сложный, чтобы быть двумерным. Поэтому её размерность лучше описывать не обычной топологической размерностью 1, но её фрактальной размерностью, равной в этом случае числу, лежащему в интервале между 1 и 2.

Характеристики
Простейшие фракталы
Странный аттрактор
L-система
Бифуркационные фракталы
Случайные фракталы
Люди
Связанные темы
Определения
Преобразованные
Неплоские
Выбор редакции
Изучаем английский язык дальше. Переходим к уроку четвертому. Выучив материал этого урока, можно будет смело утверждать, что четвертая...

Тема: Фракталы. 1.Введение. Краткая историческая справка о фракталах. 2.Фракталы – элементы геометрии в природе. 3.Объекты, обладающие...

Подробности Категория: Разнообразие стилей и направлений в искусстве и их особенности Опубликовано 05.03.2015 10:28 Просмотров: 10488...

Средства связи в тексте Средства связи предложений в тексте рассматриваются на нескольких уровнях: лексическом, морфологическом,...
СИНОНИМЫ СИНОНИМЫ равнозначащие слова или слова, очень сходный по смыслу, нпр., холод и стужа, храбрый и отважный, прелестный и...
Так как дробь равна частному 2: 3, то и частное от деления одного выражения на другое можно записать с помощью черты. Например, выражение...
В ходе Церковного раскола XVII века можно выделить следующие ключевые события: 1652 г. - церковная реформа Никона 1654, 1656 гг. -...
Софья Алексеевна (1657-1704), русская царевна и великая княжна, правительница России (1682-1689 гг.). Родилась 27 сентября 1657 г....
12 апреля 1961 г. произошло событие, которое останется в памяти всех последующих поколений людей. Именно 12 апреля 1961 г. человек...