Линейная регрессия и корреляция: смысл и оценка параметров. Оценка параметров регрессионной модели


ГЛАВА 3. МОДЕЛЬ МНОЖЕСТВЕННОЙ

ЛИНЕЙНОЙ РЕГРЕССИИ

Основные понятия и уравнения множественной регрессии

На любой экономический показатель чаще всего оказывает влияние не один, а несколько совокупно действующих факторов. Например, объем реализации (Y ) для предприятий оптовой торговли может определяться уровнем цен (Х 1), числом видов товаров (Х 2), размером торговой площади (Х 3) и товарных запасов (Х 4). В целом объем спроса на какой-либо товар определяется не только его ценой (Х 1), но и ценой на конкурирующие товары (Х 2), располагаемым доходом потребителей (Х 3), а также некоторыми другими факторами. Показатель инновационной активности современных предприятий зависит от затрат на исследования и разработки (Х 1), на приобретение новых технологий (Х 2), на приобретение программных продуктов и средств (Х 3) и обучение и переподготовку кадров . В этих случаях возникает необходимость рассмотрения моделей множественной (многофакторной, многомерной) регрессии .

Модель множественной линейной регрессии является естественным обобщением парной (однофакторной) линейной регрессионной модели. В общем случае ее теоретическое уравнение имеет вид:

где Х 1 , Х 2 ,…, Х m – набор независимых переменных (факторов-аргументов); b 0 , b 1 , …, b m – набор (m + 1) параметров модели, подлежащих определению; ε – случайное отклонение (ошибка); Y – зависимая (объясняемая) переменная.

Для индивидуального i -го наблюдения (i = 1, 2, …, n ) имеем:

. (3.3)

Здесь b j называется j -м теоретическим коэффициентом регрессии (частичным коэффициентом регрессии).

Аналогично случаю парной регрессии, истинные значения параметров (коэффициентов) b j по выборочным данным получить невозможно. Поэтому для определения статистической взаимосвязи переменных Y и Х 1 , Х 2 , …, Х m оценивается эмпирическое уравнение множественной регрессионной модели

в котором , – оценки соответствующих теоретических коэффициентов регрессии; е – оценка случайного отклонения ε.

Оцененное уравнение (3.4) в первую очередь должно описывать общий тренд (направление, тенденцию) изменения зависимой переменной Y . При этом необходимо иметь возможность рассчитать отклонения от этого тренда.

Для решения задачи определения оценок параметров множественной линейной регрессии по выборке объема n необходимо выполнение неравенства n ³ m + 1 (m – число регрессоров). В данном случае число v = n - m - 1 будет называться числом степеней свободы. Отсюда для парной регрессии имеем v = n - 2. Нетрудно заметить, что если число степеней свободы невелико, то и статистическая надежность оцениваемой формулы невысока. На практике принято считать, что достаточная надежность обеспечивается в том случае, когда число наблюдений по крайней мере в три раза превосходит число оцениваемых параметров k = m + 1. Обычно, статистическая значимость парной модели наблюдается при n ≥ 7.

Самым распространенным методом оценки параметров уравнения множественной линейной регрессионной модели является метод наименьших квадратов (МНК) . Напомним (см. раздел 2.4.1), что надежность оценок и статистических выводов, полученных с использованием МНК, обеспечивается при выполнении предпосылок Гаусса-Маркова. В случае множественной линейной регрессии к предпосылкам 1–4 необходимо добавить еще одну (пятую) – отсутствие мультиколлинеарности , что означает отсутствие линейной зависимости между объясняющими переменными в функциональной или статистической форме. Более подробно мультиколлинеарность объясняющих переменных будет рассмотрена в разделе (3.4). Модель, удовлетворяющая предпосылкам МНК, называется классической нормальной моделью множественной регрессии .

На практике часто бывает необходимо оценить силу влияния на зависимую переменную различных объясняющих (факторных) переменных. В этом случае используют стандартизованные коэффициенты регрессии и средние коэффициенты эластичности .

Стандартизированный коэффициент регрессии определяется по формуле:

(3.5)

где S (x j ) и S (y ) – выборочные средние квадратичные отклонения (стандарты) соответствующей объясняющей и зависимой переменных.

Средний коэффициент эластичности

(3.6)

показывает, на сколько процентов (от средней) изменится в среднем зависимая переменная Y при увеличении только j -й объясняющей переменной на 1 %.

Для модели с двумя объясняющими (факторными) переменными , после нахождения оценок , уравнение определяет плоскость в трехмерном пространстве. В общем случае m независимых переменных геометрической интерпретацией модели является гиперплоскость в гиперпространстве.

Оценка параметров регрессионной модели

Для нахождения оценок параметров b j множественной линейной регрессионной модели (коэффициентов эмпирического уравнения регрессии) используется метод наименьших квадратов (МНК). Суть МНК заключается в минимизации суммы квадратов отклонений наблюдаемых выборочных значений y i зависимой переменной Y от их модельных оценок . Отклонение е i , соответствующее уравнению регрессии в i -м наблюдении (i = 1, 2, …, n ), рассчитывается по формуле:

Тогда для нахождения коэффициентов по МНК минимизируется следующая функция m + 1 переменных:

. (3.8)

Необходимым условием минимума функции G является равенство нулю всех ее частных производных по Частные производные квадратичной функции (3.8) являются линейными функциями относительно параметров:

. (3.9)

Приравнивая (3.9) к нулю, получаем систему m + 1 линейных нормальных уравнений с m + 1 неизвестными для определения параметров модели:

(3.10)

где j = 1, 2, …, m – определяет набор регрессоров.

Следует заметить, что включение в модель новых объясняющих переменных усложняет расчет коэффициентов множественной линейной регрессии путем решения системы (3.10) по сравнению с парной моделью. Система из трех уравнений, соответствующая модели с двумя объясняющими переменными , может быть легко решена методом определителей. Однако в общем виде решение системы (3.10) и анализ множественной регрессионной модели наиболее целесообразно проводить в векторно-матричной форме .

Тогда, вводя матричные обозначения, запишем:

, , .

Здесь Y n -мерный вектор-столбец наблюдений зависимой переменной; Х – матрица размерности n · (m + 1) значений объясняющих переменных x ij , в которой единица соответствует переменной при свободном члене ; – вектор-столбец размерности m + 1 оценок параметров модели (коэффициентов уравнения регрессии); е – вектор-столбец размерности n отклонений выборочных (реальных) значений y i зависимой переменной, от значений оценок , получаемых по уравнению регрессии.

В матричной форме модель (3.1) примет вид:

Y = XB + e. (3.11)

Оценкой этой модели по выборочным данным является уравнение (эмпирическая модель)

Предпосылки МНК (см. раздел 2.4.1.) в матричной форме можно записать следующим образом:

1. M (e) = 0; 2. D (e) = σ 2 I ; 3. Матрица ковариаций V (e) = M (e · e T ) = σ 2 E,

где e = – вектор-столбец случайных отклонений (ошибок);

I = – (n · 1) вектор;

E = E n × n = – единичная матрица;

– матрица ковариаций или ковариационная матрица вектора случайных отклонений, которая является многомерным аналогом дисперсии одной переменной и в которой, если предпосылка о некоррелированности отклонений e i и e j выполняется, все элементы, не лежащие на главной диагонали, равны нулю, а элементы главной диагонали равны одной и той же дисперсии D (e i ) = σ 2 ; 4. e – нормально распределенный случайный вектор, т. е. e ~ N (0, σ 2 Е); 5. r (X ) = m + 1 > n – детерминированная матрица объясняющих переменных (регрессоров) имеет ранг r , равный числу определяемых параметров модели m + 1, кроме того, число имеющихся наблюдений каждой из объясняющих переменных и зависимой переменной превосходит ранг матрицы Х .

Выполнение пятой предпосылки означает линейную независимость объясняющих переменных (линейную независимость столбцов матрицы Х ), т. е. отсутствие функциональной мультиколлинеарности.

Наша задача заключается в нахождении вектора оценок по МНК, который, при выполнении предпосылок 1–5, обладает наименьшим рассеянием относительно параметра B .

Воспользовавшись известными соотношениями матричной алгебры и правилами дифференцирования по векторному аргументу, получим необходимое условие минимума функции G (равенство нулю вектор-столбца частных производных )

Линейная регрессия находит широкое применение в экономет­рике в виде четкой экономической интерпретации ее параметров. Линейная регрессия сводится к нахождению уравнения вида

Или . (4.6)

Уравнение вида позволяет по заданным значени­ям фактора х иметь теоретические значения результативного признака, подставляя в него фактические значения фактора x . На графике теоретические значения представляют линию регрессии (рис. 4.2).

Рис. 4.2. Графическая оценка параметров линейной регрессии

Построение линейной регрессии сводится к оценке ее пара­метров и .Оценки параметров линейной регрессии могут быть найдены разными методами. Можно обратиться к полю корреляции и, выбрав на графике две точки, провести через них прямую линию (см. рис. 4.2). Далее по графику можно опреде­лить значения параметров. Параметр определим как точку пе­ресечения линии регрессии с осью ,а параметр оценим, исхо­дя из угла наклона линии регрессии, как ,где прираще­ние результата у, a приращение фактора х, т. е.

Классический подход к оцениванию параметров линейной регрессии основан на методе наименьших квадратов (МНК).

МНК позволяет получить такие оценки параметров и ,при которых сумма квадратов отклонений фактических значений ре­зультативного признака (у) от расчетных (теоретических) ми­нимальна:

Иными словами, из всего множества линий линия регрессии на графике выбирается так, чтобы сумма квадратов расстояний по вертикали между точками и этой линией была бы минимальной:

cследовательно,

Чтобы найти минимум функции (4.7), надо вычислить част­ные производные по каждому из параметров а и b и приравнять их к нулю.

Обозначим через S , тогда:

Преобразуя эту систему, получим следующую систему нор­мальных уравнений для оценки параметров и :

. (4.8)

Решая систему нормальных уравнений (4.8) либо методом последовательного исключения переменных, либо методом оп­ределителей, найдем числовые значения искомых параметров и . Можно воспользоваться следующими готовыми формулами:

. (4.9)

Формула (4.9) получена из первого уравнения системы (4.8), если все его члены разделить на п.

где ковариация признаков;

Дисперсия признака x .

Ввиду того, что , ,получим следующую формулу расчета оценки параметра b :

. (4.10)

Параметр называется коэффициентом регрессии. Его вели­чина показывает среднее изменение результата с изменением фактора на одну единицу. Так, если в функции издержек (у - издержки (тыс. руб.), х - количество единиц продукции). То, следовательно, с увеличением объема продукции (х) на 1 ед. издержки производства возрастают в среднем на 2 тыс. руб., т. е. дополнительный прирост продукции на 1 ед. потребует увеличения затрат в среднем на 2 тыс. руб.


Возможность четкой экономической интерпретации коэф­фициента регрессии сделала линейное уравнение регрессии достаточно распространенным в эконометрических исследова­ниях.

Формально - значение у при х = 0. Если признак-фактор не имеет и не может иметь нулевого значения, то вышеуказанная трактовка свободного члена не имеет смысла. Параметр может не иметь экономического содержания. Попытки экономически интерпретировать параметр а могут привести к абсурду, особен­но при < 0.

Что такое регрессия?

Рассмотрим две непрерывные переменные x=(x 1 , x 2 , .., x n), y=(y 1 , y 2 , ..., y n).

Разместим точки на двумерном графике рассеяния и скажем, что мы имеем линейное соотношение , если данные аппроксимируются прямой линией.

Если мы полагаем, что y зависит от x , причём изменения в y вызываются именно изменениями в x , мы можем определить линию регрессии (регрессия y на x ), которая лучше всего описывает прямолинейное соотношение между этими двумя переменными.

Статистическое использование слова "регрессия" исходит из явления, известного как регрессия к среднему, приписываемого сэру Френсису Гальтону (1889).

Он показал, что, хотя высокие отцы имеют тенденцию иметь высоких сыновей, средний рост сыновей меньше, чем у их высоких отцов. Средний рост сыновей "регрессировал" и "двигался вспять" к среднему росту всех отцов в популяции. Таким образом, в среднем высокие отцы имеют более низких (но всё-таки высоких) сыновей, а низкие отцы имеют сыновей более высоких (но всё-таки довольно низких).

Линия регрессии

Математическое уравнение, которое оценивает линию простой (парной) линейной регрессии:

x называется независимой переменной или предиктором.

Y - зависимая переменная или переменная отклика. Это значение, которое мы ожидаем для y (в среднем), если мы знаем величину x , т.е. это «предсказанное значение y »

  • a - свободный член (пересечение) линии оценки; это значение Y , когда x=0 (Рис.1).
  • b - угловой коэффициент или градиент оценённой линии; она представляет собой величину, на которую Y увеличивается в среднем, если мы увеличиваем x на одну единицу.
  • a и b называют коэффициентами регрессии оценённой линии, хотя этот термин часто используют только для b .

Парную линейную регрессию можно расширить, включив в нее более одной независимой переменной; в этом случае она известна как множественная регрессия .

Рис.1. Линия линейной регрессии, показывающая пересечение a и угловой коэффициент b (величину возрастания Y при увеличении x на одну единицу)

Метод наименьших квадратов

Мы выполняем регрессионный анализ, используя выборку наблюдений, где a и b - выборочные оценки истинных (генеральных) параметров, α и β , которые определяют линию линейной регрессии в популяции (генеральной совокупности).

Наиболее простым методом определения коэффициентов a и b является метод наименьших квадратов (МНК).

Подгонка оценивается, рассматривая остатки (вертикальное расстояние каждой точки от линии, например, остаток = наблюдаемому y - предсказанный y , Рис. 2).

Линию лучшей подгонки выбирают так, чтобы сумма квадратов остатков была минимальной.

Рис. 2. Линия линейной регрессии с изображенными остатками (вертикальные пунктирные линии) для каждой точки.

Предположения линейной регрессии

Итак, для каждой наблюдаемой величины остаток равен разнице и соответствующего предсказанного Каждый остаток может быть положительным или отрицательным.

Можно использовать остатки для проверки следующих предположений, лежащих в основе линейной регрессии:

  • Остатки нормально распределены с нулевым средним значением;

Если допущения линейности, нормальности и/или постоянной дисперсии сомнительны, мы можем преобразовать или и рассчитать новую линию регрессии, для которой эти допущения удовлетворяются (например, использовать логарифмическое преобразование или др.).

Аномальные значения (выбросы) и точки влияния

"Влиятельное" наблюдение, если оно опущено, изменяет одну или больше оценок параметров модели (т.е. угловой коэффициент или свободный член).

Выброс (наблюдение, которое противоречит большинству значений в наборе данных) может быть "влиятельным" наблюдением и может хорошо обнаруживаться визуально, при осмотре двумерной диаграммы рассеяния или графика остатков.

И для выбросов, и для "влиятельных" наблюдений (точек) используют модели, как с их включением, так и без них, обращают внимание на изменение оценки (коэффициентов регрессии).

При проведении анализа не стоит отбрасывать выбросы или точки влияния автоматически, поскольку простое игнорирование может повлиять на полученные результаты. Всегда изучайте причины появления этих выбросов и анализируйте их.

Гипотеза линейной регрессии

При построении линейной регрессии проверяется нулевая гипотеза о том, что генеральный угловой коэффициент линии регрессии β равен нулю.

Если угловой коэффициент линии равен нулю, между и нет линейного соотношения: изменение не влияет на

Для тестирования нулевой гипотезы о том, что истинный угловой коэффициент равен нулю можно воспользоваться следующим алгоритмом:

Вычислить статистику критерия, равную отношению , которая подчиняется распределению с степенями свободы, где стандартная ошибка коэффициента


,

- оценка дисперсии остатков.

Обычно если достигнутый уровень значимости нулевая гипотеза отклоняется.


где процентная точка распределения со степенями свободы что дает вероятность двустороннего критерия

Это тот интервал, который содержит генеральный угловой коэффициент с вероятностью 95%.

Для больших выборок, скажем, мы можем аппроксимировать значением 1,96 (то есть статистика критерия будет стремиться к нормальному распределению)

Оценка качества линейной регрессии: коэффициент детерминации R 2

Из-за линейного соотношения и мы ожидаем, что изменяется, по мере того как изменяется , и называем это вариацией, которая обусловлена или объясняется регрессией. Остаточная вариация должна быть как можно меньше.

Если это так, то большая часть вариации будет объясняться регрессией, а точки будут лежать близко к линии регрессии, т.е. линия хорошо соответствует данным.

Долю общей дисперсии , которая объясняется регрессией называют коэффициентом детерминации , обычно выражают через процентное соотношение и обозначают R 2 (в парной линейной регрессии это величина r 2 , квадрат коэффициента корреляции), позволяет субъективно оценить качество уравнения регрессии.

Разность представляет собой процент дисперсии который нельзя объяснить регрессией.

Нет формального теста для оценки мы вынуждены положиться на субъективное суждение, чтобы определить качество подгонки линии регрессии.

Применение линии регрессии для прогноза

Можно применять регрессионную линию для прогнозирования значения по значению в пределе наблюдаемого диапазона (никогда не экстраполируйте вне этих пределов).

Мы предсказываем среднюю величину для наблюдаемых, которые имеют определенное значение путем подстановки этого значения в уравнение линии регрессии.

Итак, если прогнозируем как Используем эту предсказанную величину и ее стандартную ошибку, чтобы оценить доверительный интервал для истинной средней величины в популяции.

Повторение этой процедуры для различных величин позволяет построить доверительные границы для этой линии. Это полоса или область, которая содержит истинную линию, например, с 95% доверительной вероятностью.

Простые регрессионные планы

Простые регрессионные планы содержат один непрерывный предиктор. Если существует 3 наблюдения со значениями предиктора P , например, 7, 4 и 9, а план включает эффект первого порядка P , то матрица плана X будет иметь вид

а регрессионное уравнение с использованием P для X1 выглядит как

Y = b0 + b1 P

Если простой регрессионный план содержит эффект высшего порядка для P , например квадратичный эффект, то значения в столбце X1 в матрице плана будут возведены во вторую степень:

а уравнение примет вид

Y = b0 + b1 P2

Сигма -ограниченные и сверхпараметризованные методы кодирования не применяются по отношению к простым регрессионным планам и другим планам, содержащим только непрерывные предикторы (поскольку, просто не существует категориальных предикторов). Независимо от выбранного метода кодирования, значения непрерывных переменных увеличиваются в соответствующей степени и используются как значения для переменных X . При этом перекодировка не выполняется. Кроме того, при описании регрессионных планов можно опустить рассмотрение матрицы плана X , а работать только с регрессионным уравнением.

Пример: простой регрессионный анализ

Этот пример использует данные, представленные в таблице:

Рис. 3. Таблица исходных данных.

Данные составлены на основе сравнения переписей 1960 и 1970 в произвольно выбранных 30 округах. Названия округов представлены в виде имен наблюдений. Информация относительно каждой переменной представлена ниже:

Рис. 4. Таблица спецификаций переменных.

Задача исследования

Для этого примера будут анализироваться корреляция уровня бедности и степень, которая предсказывает процент семей, которые находятся за чертой бедности. Следовательно мы будем трактовать переменную 3 (Pt_Poor ) как зависимую переменную.

Можно выдвинуть гипотезу: изменение численности населения и процент семей, которые находятся за чертой бедности, связаны между собой. Кажется разумным ожидать, что бедность ведет к оттоку населения, следовательно, здесь будет отрицательная корреляция между процентом людей за чертой бедности и изменением численности населения. Следовательно мы будем трактовать переменную 1 (Pop_Chng ) как переменную-предиктор.

Просмотр результатов

Коэффициенты регрессии

Рис. 5. Коэффициенты регрессии Pt_Poor на Pop_Chng.

На пересечении строки Pop_Chng и столбца Парам. не стандартизованный коэффициент для регрессии Pt_Poor на Pop_Chng равен -0.40374 . Это означает, что для каждого уменьшения численности населения на единицу, имеется увеличение уровня бедности на.40374. Верхний и нижний (по умолчанию) 95% доверительные пределы для этого не стандартизованного коэффициента не включают ноль, так что коэффициент регрессии значим на уровне p<.05 . Обратите внимание на не стандартизованный коэффициент, который также является коэффициентом корреляции Пирсона для простых регрессионных планов, равен -.65, который означает, что для каждого уменьшения стандартного отклонения численности населения происходит увеличение стандартного отклонения уровня бедности на.65.

Распределение переменных

Коэффициенты корреляции могут стать существенно завышены или занижены, если в данных присутствуют большие выбросы. Изучим распределение зависимой переменной Pt_Poor по округам. Для этого построим гистограмму переменной Pt_Poor .

Рис. 6. Гистограмма переменной Pt_Poor.

Как вы можете заметить, распределение этой переменной заметно отличается от нормального распределения. Тем не менее, хотя даже два округа (два правых столбца) имеют высокий процент семей, которые находятся за чертой бедности, чем ожидалось в случае нормального распределения, кажется, что они находятся "внутри диапазона."

Рис. 7. Гистограмма переменной Pt_Poor.

Это суждение в некоторой степени субъективно. Эмпирическое правило гласит, что выбросы необходимо учитывать, если наблюдение (или наблюдения) не попадают в интервал (среднее ± 3 умноженное на стандартное отклонение). В этом случае стоит повторить анализ с выбросами и без, чтобы убедиться, что они не оказывают серьезного эффекта на корреляцию между членами совокупности.

Диаграмма рассеяния

Если одна из гипотез априори о взаимосвязи между заданными переменными, то ее полезно проверить на графике соответствующей диаграммы рассеяния.

Рис. 8. Диаграмма рассеяния.

Диаграмма рассеяния показывает явную отрицательную корреляцию (-.65 ) между двумя переменными. На ней также показан 95% доверительный интервал для линии регрессии, т.е., с 95% вероятностью линия регрессии проходит между двумя пунктирными кривыми.

Критерии значимости

Рис. 9. Таблица, содержащая критерии значимости.

Критерий для коэффициента регрессии Pop_Chng подтверждает, что Pop_Chng сильно связано с Pt_Poor , p<.001 .

Итог

На этом примере было показано, как проанализировать простой регрессионный план. Была также представлена интерпретация не стандартизованных и стандартизованных коэффициентов регрессии. Обсуждена важность изучения распределения откликов зависимой переменной, продемонстрирована техника определения направления и силы взаимосвязи между предиктором и зависимой переменной.

Линейная регрессия сводится к нахождению уравнения вида:

Первое выражение позволяет по заданным значениям фактора х рассчитать теоретические значения результативного признака, подставляя в него фактические значения факторах. На графике (рис. 1.2) теоретические значения лежат на прямой, которая представляет собой линию регрессии.

Построение линейной регрессии сводится к оценке ее параметров - а и Ь. Классический подход к оцениванию параметров линейной регрессии основан на методе наименьших квадратов (МНК).

МНК позволяет получить такие оценки параметров а и Ь, при которых сумма квадратов отклонений фактических значений у от теоретических у х минимальна:

Рис. 1.2.

Для нахождения минимума надо вычислить частные производные суммы (1.4) по каждому из параметров (а и ft) и приравнять их к нулю:

После преобразования получаем систему нормальных уравнений:

В системе п - объем выборки, суммы легко рассчитываются из исходных данных. Решая систему относительно а и Ь, получаем:

Выражение (1.7) можно записать в другом виде:

где cov(x, у) - ковариация признаков; су* - дисперсия фактора х.

Параметр b называется коэффициентом регрессии. Его величина показывает среднее изменение результата с увеличением фактора на одну единицу. Возможность четкой экономической интерпретации коэффициента регрессии сделала линейное уравнение парной регрессии достаточно распространенным в эконометрических исследованиях.

Формально а - значение у при х = 0. Если х не имеет и не может иметь нулевого значения, то такая трактовка свободного члена а не имеет смысла. Параметр а чаще всего не имеет экономического содержания. Попытки экономически интерпретировать его могут привести к абсурду, особенно при а 0. Интерпретировать можно лишь знак при параметре а. Если а > 0, то относительное изменение результата происходит медленнее, чем изменение фактора. Сравним эти относительные изменения:

Иногда линейное уравнение парной регрессии записывают для отклонений от средних значений:

где

При этом свободный член равен нулю, что и отражено в выражении (1.10). Этот факт следует из геометрических соображений: уравнению регрессии отвечает та же прямая (1.3), но при оценке регрессии в отклонениях начало координат перемещается в точку с координатами (Зс, у). При этом в выражении (1.8) обе суммы будут равны нулю, что и повлечет равенство нулю свободного члена. Выражения (1.7) и (1.9) при этом также упрощаются.

В качестве примера рассмотрим на группе предприятий, выпускающих один вид продукции, регрессионную зависимость издержек от выпуска продукции у = а + Ьх + е (табл. 1.1).

Система нормальных уравнений будет иметь вид

Решая ее, получаем а - -5,79, b - 36,84.

Уравнение регрессии имеет вид

Таблица 1.1

Исходные данные для оценки параметров парной линейной модели

Выпуск продукции (х), тыс. ед.

Затраты на производство (у), млн руб.

Подставив в уравнение регрессии значения х, найдем теоретические значения у (последняя колонка табл. 1.1).

Величина а не имеет экономического смысла. Если переменные х и у выразить через отклонения от средних уровней, то линия регрессии на графике пройдет через начало координат. Оценка коэффициента регрессии при этом не изменится: у" = 36,84х", где у" = у-у, х" = х-х.

В качестве другого примера рассмотрим функцию потребления в виде:

где С - потребление; у - доход; К, L - параметры.

Данное уравнение линейной регрессии обычно используется в увязке с балансовым равенством

где / - размер инвестиций; г - сбережения.

Для простоты предположим, что доход расходуется на потребление и инвестиции. Таким образом, рассматривается система уравнений

Наличие балансового равенства накладывает ограничения на величину коэффициента регрессии, которая не может быть больше единицы, т.е. К 1.

Предположим, что функция потребления составила С = 1,9 + 0,65у.

Коэффициент регрессии характеризует склонность к потреблению. Он показывает, что из каждой тысячи рублей дохода на потребление расходуется в среднем 650 руб., а 350 руб. инвестируется. Если рассчитать регрессию размера инвестиций от дохода, т.е. I = а + by, то уравнение регрессии будет I = -1,9 + 0,35у. Его можно и не определять, поскольку оно выводится из функции потребления. Коэффициенты регрессии этих двух уравнений связаны равенством 0,65 + 0,35 = 1. Если коэффициент регрессии оказывается больше единицы, то у и на потребление расходуются не только доходы, но и сбережения.

Коэффициент регрессии К в функции потребления используется для расчета мультипликатора:

где т » 2,86, поэтому дополнительные вложения 1 тыс. руб. на длительный срок приведут при прочих равных условиях к дополнительному доходу 2,86 тыс. руб.

При линейной регрессии в качестве показателя тесноты связи выступает линейный коэффициент корреляции г.

Его значения находятся в границах: - 1 r 1. Если 6>0,то0 г b 0-1 г 0. По данным примера расчет выражения (1.11) дает г = 0,991, что означает очень тесную зависимость затрат на производство от величины объема выпускаемой продукции.

Для оценки качества подбора линейной функции рассчитывается коэффициент детерминации как квадрат линейного коэффициента корреляции I 2 . Он характеризует долю дисперсии результативного признака у, объясняемую регрессией, в общей дисперсии результативного признака:

Величина 1 - г 2 характеризует долю дисперсии у, вызванную влиянием остальных, не учтенных в модели факторов.

В примере г 2 = 0,982. Уравнением регрессии объясняется 98,2% дисперсии у, а на прочие факторы приходится 1,8% - это остаточная дисперсия.

По территориям региона приводятся данные за 200Х г.

Номер региона Среднедушевой прожиточный минимум в день одного трудоспособного, руб., х Среднедневная заработная плата, руб., у
1 78 133
2 82 148
3 87 134
4 79 154
5 89 162
6 106 195
7 67 139
8 88 158
9 73 152
10 87 162
11 76 159
12 115 173

Задание:

1. Постройте поле корреляции и сформулируйте гипотезу о форме связи.

2. Рассчитайте параметры уравнения линейной регрессии

4. Дайте с помощью среднего (общего) коэффициента эластичности сравнительную оценку силы связи фактора с результатом.

7. Рассчитайте прогнозное значение результата, если прогнозное значение фактора увеличится на 10% от его среднего уровня. Определите доверительный интервал прогноза для уровня значимости .

Решение:

Решим данную задачу с помощью Excel.

1. Сопоставив имеющиеся данные х и у, например, ранжировав их в порядке возрастания фактора х, можно наблюдать наличие прямой зависимости между признаками, когда увеличение среднедушевого прожиточного минимума увеличивает среднедневную заработную плату. Исходя из этого, можно сделать предположение, что связь между признаками прямая и её можно описать уравнением прямой. Этот же вывод подтверждается и на основе графического анализа.

Чтобы построить поле корреляции можно воспользоваться ППП Excel. Введите исходные данные в последовательности: сначала х, затем у.

Выделите область ячеек, содержащую данные.

Затем выберете: Вставка / Точечная диаграмма / Точечная с маркерами как показано на рисунке 1.

Рисунок 1 Построение поля корреляции

Анализ поля корреляции показывает наличие близкой к прямолинейной зависимости, так как точки расположены практически по прямой линии.

2. Для расчёта параметров уравнения линейной регрессии
воспользуемся встроенной статистической функцией ЛИНЕЙН .

Для этого:

1) Откройте существующий файл, содержащий анализируемые данные;
2) Выделите область пустых ячеек 5×2 (5 строк, 2 столбца) для вывода результатов регрессионной статистики.
3) Активизируйте Мастер функций : в главном меню выберете Формулы / Вставить функцию .
4) В окне Категория выберете Статистические , в окне функция - ЛИНЕЙН . Щёлкните по кнопке ОК как показано на Рисунке 2;

Рисунок 2 Диалоговое окно «Мастер функций»

5) Заполните аргументы функции:

Известные значения у

Известные значения х

Константа - логическое значение, которое указывает на наличие или на отсутствие свободного члена в уравнении; если Константа = 1, то свободный член рассчитывается обычным образом, если Константа = 0, то свободный член равен 0;

Статистика - логическое значение, которое указывает, выводить дополнительную информацию по регрессионному анализу или нет. Если Статистика = 1, то дополнительная информация выводится, если Статистика = 0, то выводятся только оценки параметров уравнения.

Щёлкните по кнопке ОК ;

Рисунок 3 Диалоговое окно аргументов функции ЛИНЕЙН

6) В левой верхней ячейке выделенной области появится первый элемент итоговой таблицы. Чтобы раскрыть всю таблицу, нажмите на клавишу , а затем на комбинацию клавиш ++ .

Дополнительная регрессионная статистика будет выводиться в порядке, указанном в следующей схеме:

Значение коэффициента b Значение коэффициента a
Стандартная ошибка b Стандартная ошибка a
Стандартная ошибка y
F-статистика
Регрессионная сумма квадратов

Рисунок 4 Результат вычисления функции ЛИНЕЙН

Получили уровнение регрессии:

Делаем вывод: С увеличением среднедушевого прожиточного минимума на 1 руб. среднедневная заработная плата возрастает в среднем на 0,92 руб.

Означает, что 52% вариации заработной платы (у) объясняется вариацией фактора х - среднедушевого прожиточного минимума, а 48% - действием других факторов, не включённых в модель.

По вычисленному коэффициенту детерминации можно рассчитать коэффициент корреляции: .

Связь оценивается как тесная.

4. С помощью среднего (общего) коэффициента эластичности определим силу влияния фактора на результат.

Для уравнения прямой средний (общий) коэффициент эластичности определим по формуле:

Средние значения найдём, выделив область ячеек со значениями х, и выберем Формулы / Автосумма / Среднее , и то же самое произведём со значениями у.

Рисунок 5 Расчёт средних значений функции и аргумент

Таким образом, при изменении среднедушевого прожиточного минимума на 1% от своего среднего значения среднедневная заработная плата изменится в среднем на 0,51%.

С помощью инструмента анализа данных Регрессия можно получить:
- результаты регрессионной статистики,
- результаты дисперсионного анализа,
- результаты доверительных интервалов,
- остатки и графики подбора линии регрессии,
- остатки и нормальную вероятность.

Порядок действий следующий:

1) проверьте доступ к Пакету анализа . В главном меню последовательно выберите: Файл/Параметры/Надстройки .

2) В раскрывающемся списке Управление выберите пункт Надстройки Excel и нажмите кнопку Перейти.

3) В окне Надстройки установите флажок Пакет анализа , а затем нажмите кнопку ОК .

Если Пакет анализа отсутствует в списке поля Доступные надстройки , нажмите кнопку Обзор , чтобы выполнить поиск.

Если выводится сообщение о том, что пакет анализа не установлен на компьютере, нажмите кнопку Да , чтобы установить его.

4) В главном меню последовательно выберите: Данные / Анализ данных / Инструменты анализа / Регрессия , а затем нажмите кнопку ОК .

5) Заполните диалоговое окно ввода данных и параметров вывода:

Входной интервал Y - диапазон, содержащий данные результативного признака;

Входной интервал X - диапазон, содержащий данные факторного признака;

Метки - флажок, который указывает, содержит ли первая строка названия столбцов или нет;

Константа - ноль - флажок, указывающий на наличие или отсутствие свободного члена в уравнении;

Выходной интервал - достаточно указать левую верхнюю ячейку будущего диапазона;

6) Новый рабочий лист - можно задать произвольное имя нового листа.

Затем нажмите кнопку ОК .

Рисунок 6 Диалоговое окно ввода параметров инструмента Регрессия

Результаты регрессионного анализа для данных задачи представлены на рисунке 7.

Рисунок 7 Результат применения инструмента регрессия

5. Оценим с помощью средней ошибки аппроксимации качество уравнений. Воспользуемся результатами регрессионного анализа представленного на Рисунке 8.

Рисунок 8 Результат применения инструмента регрессия «Вывод остатка»

Составим новую таблицу как показано на рисунке 9. В графе С рассчитаем относительную ошибку аппроксимации по формуле:

Рисунок 9 Расчёт средней ошибки аппроксимации

Средняя ошибка аппроксимации рассчитывается по формуле:

Качество построенной модели оценивается как хорошее, так как не превышает 8 - 10%.

6. Из таблицы с регрессионной статистикой (Рисунок 4) выпишем фактическое значение F-критерия Фишера:

Поскольку при 5%-ном уровне значимости, то можно сделать вывод о значимости уравнения регрессии (связь доказана).

8. Оценку статистической значимости параметров регрессии проведём с помощью t-статистики Стьюдента и путём расчёта доверительного интервала каждого из показателей.

Выдвигаем гипотезу Н 0 о статистически незначимом отличии показателей от нуля:

.

для числа степеней свободы

На рисунке 7 имеются фактические значения t-статистики:

t-критерий для коэффициента корреляции можно рассчитать двумя способами:

I способ:

где - случайная ошибка коэффициента корреляции.

Данные для расчёта возьмём из таблицы на Рисунке 7.

II способ:

Фактические значения t-статистики превосходят табличные значения:

Поэтому гипотеза Н 0 отклоняется, то есть параметры регрессии и коэффициент корреляции не случайно отличаются от нуля, а статистически значимы.

Доверительный интервал для параметра a определяется как

Для параметра a 95%-ные границы как показано на рисунке 7 составили:

Доверительный интервал для коэффициента регрессии определяется как

Для коэффициента регрессии b 95%-ные границы как показано на рисунке 7 составили:

Анализ верхней и нижней границ доверительных интервалов приводит к выводу о том, что с вероятностью параметры a и b, находясь в указанных границах, не принимают нулевых значений, т.е. не являются статистически незначимыми и существенно отличны от нуля.

7. Полученные оценки уравнения регрессии позволяют использовать его для прогноза. Если прогнозное значение прожиточного минимума составит:

Тогда прогнозное значение прожиточного минимума составит:

Ошибку прогноза рассчитаем по формуле:

где

Дисперсию посчитаем также с помощью ППП Excel. Для этого:

1) Активизируйте Мастер функций : в главном меню выберете Формулы / Вставить функцию .

3) Заполните диапазон, содержащий числовые данные факторного признака. Нажмите ОК .

Рисунок 10 Расчёт дисперсии

Получили значение дисперсии

Для подсчёта остаточной дисперсии на одну степень свободы воспользуемся результатами дисперсионного анализа как показано на Рисунке 7.

Доверительные интервалы прогноза индивидуальных значений у при с вероятностью 0,95 определяются выражением:

Интервал достаточно широк, прежде всего, за счёт малого объёма наблюдений. В целом выполненный прогноз среднемесячной заработной платы оказался надёжным.

Условие задачи взято из: Практикум по эконометрике: Учеб. пособие / И.И. Елисеева, С.В. Курышева, Н.М. Гордеенко и др.; Под ред. И.И. Елисеевой. - М.: Финансы и статистика, 2003. - 192 с.: ил.

Выбор редакции
Денежная единица РФ "...Статья 27. Официальной денежной единицей (валютой) Российской Федерации является рубль. Один рубль состоит из 100...

Техника "100 желаний" Научиться исполнять желания может каждый. Для этого нужно всего лишь договориться со своим подсознанием! А как это...

Получив атеистическое воспитание, я долгое время не испытывал интереса, а уж тем более священного трепета от религиозных святынь да...

Скакать во сне на белой лошади - прекрасный знак. В первую очередь он сулит Вам прочность дружеских связей и радость встреч с товарищами...
Заранее говорю, никогда не пробовала делать с другим сыром, только с твердыми сортами. В данном рецепте я использовала остатки трех...
Будьте чуткими к изменениям настроения любимых людей! Помните: мы получаем от мира ровно то, что ему даем. Хотите, чтобы окружающие...
Татуировка - практически такое же древнее явление, как и существование человечества. Тату были обнаружены даже на телах мумий, найденных...
Святой Спиридон Тримифунтский - очень почитаемый подвижник во всем христианском мире. К его мощам, на острове Корфу в Греции, постоянно...
Праздники, кто же их не любит? А что же легло в основу праздника День Народного Единства в России ? Праздник единства подчеркивает: какой...