Эта сила прижимает друг к другу оба полушария по поверхности S=πR2 и следовательно, обуславливает дополнительное давление.


Резиновый шар, мыльный пузырь могут оставаться в равновесии лишь при условии, чтобы давление воздуха внутри них было на определенную величину больше давления наружного воздуха. Вычислим превышение внутреннего давления над наружным.

Пусть мыльный пузырь имеет радиус и пусть избыток давления внутри него над наружным давлением равняется Чтобы увеличить объем пузыря на исчезающе малую величину нужно затратить работу которая идет на увеличение свободной энергии поверхности пузыря и равна где а - поверхностное натяжение мыльной пленки, величина одной из поверхностей пузыря (разностью радиусов внутренней и наружной поверхностей для простоты пренебрегаем). Итак, имеем уравнение

с другой стороны,

Подставляя выражения для в вышеприведенное уравнение, получаем:

По закону противодействия такую же величину имеет давление, производимое пузырем на воздух, находящийся внутри него.

Если вместо пузыря, имеющего две поверхностные пленки, будем рассматривать каплю, у которой только одна поверхность, то придем к выводу, что поверхностная пленка производит на внутренность капли давление, равное

где радиус капли.

Вообще вследствие кривизны поверхностного слоя жидкости создается избыточное давление: положительное под выпуклой поверхностью и отрицательное под вогнутой поверхностью. Таким образом, при наличии кривизны поверхностный слой жидкости становится источником силы, направленной от выпуклой стороны слоя к вогнутой стороне.

Рис. 226. К пояснению формулы Лапласа.

Лаплас дал формулу для избыточного давления пригодную для случая, когда поверхность жидкости имеет любую форму, допускаемую физической природой жидкого состояния. Эта формула Лапласа имеет следующий вид:

где имеют следующее значение. В какой-нибудь точке поверхности жидкости (рис. 226) нужно вообразить нормаль и через эту нормаль провести две взаимно перпендикулярные плоскости, которые пересекут поверхность жидкости по кривым и Радиусы кривизны этих кривых в точке и обозначаются через

Легко видеть, что из формулы Лапласа для плоской поверхности жидкости получается а для шаровой поверхности как это мы вывели раньше.

Если бы поверхность была «седлообразной», то кривые и лежали бы по разные стороны от касательной плоскости в

точке тогда радиусы имели бы разные знаки. В геометрии доказывается, что у так называемых минимальных поверхностей т. е. имеющих при данном контуре наименьшую возможную площадь, сумма всюду равняется нулю. Как раз этим свойством обладают мыльные пленки, затягивающие какой-нибудь проволочный контур.

Пена есть собрание пузырей, имеющих общие стенки. Кривизна такой стенки (определяемая выражением + пропорциональна разности давлений по обе стороны стенки.

Если конец чистой стеклянной палочки погрузить в чистую воду и вынуть палочку, то увидим на конце ее висящую каплю воды. Очевидно, что молекулы воды сильнее притягиваются к молекулам стекла, чем друг к другу.

Подобно этому медной палочкой можно поднять каплю ртути. В таких случаях говорят, что твердое тело смачивается жидкостью.

Иное будет, если опустим чистую стеклянную палочку в чистую ртуть или если стеклянную палочку, покрытую жиром, опустим в воду: здесь палочка, вынутая из жидкости, не уносит ни капли этой последней. В этих случаях говорят, что жидкость не смачивает твердого тела.

Рис. 227. Стрелками показаны направления сил, с которыми поверхностный слой действует на находящийся под ним столбик жидкости.

Если погрузить в воду узкую чистую стеклянную трубку, то вода в трубке поднимется на известную высоту вопреки силе тяжести (рис. 227, а). Узкие трубки называются капиллярными, или капиллярами, а отсюда и самое явление носит название капиллярности. Жидкости, смачивающие стенки капиллярной трубки, претерпевают капиллярное поднятие. Жидкости, не смачивающие стенок капилляра (например, ртуть в стеклянной трубке), претерпевают, как показано на рис. 227, б, опускание. Капиллярные поднятия и опускания бывают тем больше, чем уже капилляры.

Капиллярные поднятия и опускания вызываются избыточным давлением, которое возникает вследствие искривления поверхности жидкости. В самом деле, в трубке, которая смачивается жидкостью, жидкость образует вогнутый мениск. По сказанному

в предыдущем параграфе поверхность такого мениска будет развивать силу, направленную снизу вверх, и эта сила будет поддерживать в трубке столбик жидкости вопреки действию тяжести. Наоборот, в трубке, которая не смачивается жидкостью, получится выпуклый мениск; он даст силу, направленную вниз и, следовательно, понижающую уровень жидкости,

Выведем зависимость между поверхностным натяжением а жидкости, ее плотностью радиусом трубки и высотой столбика, поднявшегося в трубке. Пусть жидкость «вполне смачивает» стенки трубки (как вода стеклянную трубку), так что в месте встречи с трубкой поверхность жидкости является касательной к поверхности трубки. Это касание имеет место по контуру, длина которого есть Благодаря поверхностному натяжению контур будет развивать силу и эта сила, приложенная к столбику, будет уравновешивать силу его тяжести, равную где ускорение тяжести.

Таким образом,

т. е. высота капиллярного поднятия пропорциональна поверхностному натяжению и обратно пропорциональна радиусу трубки и плотности жидкости.

Ту же формулу (11) для капиллярного поднятия можно получить как следствие формулы Лапласа (10) или (в рассматриваемом случае симметричной поверхности) формулы (9). Можно рассуждать так: в жидкости под вогнутой поверхностью давление понижено на величину поэтому при равновесии, когда давление на уровне свободной поверхности жидкости, налитой в сосуд, равно давлению жидкости в капилляре на том же уровне, столб жидкости в капилляре должен иметь такую высоту, чтобы его давление уравновешивало дефицит давления, создаваемого вогнутостью поверхности мениска. Стало быть, откуда и получается формула (11).

Рассуждая аналогично, убеждаемся, что когда жидкость «совершенно не смачивает» стенок капилляра, при равновесии она будет находиться в капилляре на уровне, пониженном на высоту, которая определяется той же формулой (11).

Измерение капиллярного поднятия является одним из простых способов определения величины а.

На рис. 228 изображено капиллярное поднятие жидкости между двумя пластинками, составляющими двугранный угол. Нетрудно сообразить, что поднявшаяся жидкость будет сверху ограничена

гиперболой; асимптотами этой гиперболы будут служить ребра двугранного угла и линия, лежащая на уровне жидкости в сосуде.

Рассмотрим условия равновесия жидкости, соприкасающейся с твердой стенкой (рис. 229). Обозначим избыточную свободную энергию каждого квадратного сантиметра поверхности твердого тела 3, граничащего с вакуумом или газом 2, через Когда слой какой-либо жидкости смачивая поверхность твердого тела, растекается по ней, поверхность раздела твердое тело - газ заменяется поверхностью раздела твердое тело - жидкость, причем свободная энергия этой новой поверхности будет уже иная, Очевидно, что убыль свободной энергии каждого квадратного сантиметра поверхности твердого тела равна работе сил, под действием которых 1 см периметра жидкой пленки перемещается на расстояние в 1 см по направлению, перпендикулярному к периметру пленки. Стало быть, разность можно рассматривать как силу, приложенную к 1 см периметра жидкой пленки, действующую касательно к поверхности твердого тела и побуждающую жидкость продвигаться по поверхности твердого тела. Однако растекание жидкости по поверхности твердого тела сопровождается увеличением поверхности между жидкостью 1 и вакуумом или газом 2, чему пр епятствует повер хностное натяжение жидкости В общем случае при неполном смачивании жидкостью твердого тела сила (как это показано на рис. 229, а) направлена под некоторым углом к поверхности твердого тела; этот угол называют краевым углом. Мы видим, таким образом, что жидкость, граничащая с твердым телом, будет находиться в равновесии тогда, когда

Отсюда находим, что краевой угол, под которым при равновесии свободная поверхность жидкости встречает поверхность

Рис. 228. Капиллярное поднятие жидкости между пластинками, составляющими двугранный угол.

Рис. 229. Жидкость смачивает твердую стенку (а); не смачивает твердую стенку

твердого тела, определяется формулой

По смыслу вывода формулы (12) ясно, что эта формула остается справедливой и для случая, когда жидкость не смачивает твердого тела (рис. 229, б); тогда краевой угол будет тупым; отсутствие смачивания означает, что (т. е. свободная энергия твердого тела на его поверхности раздела с вакуумом или газом меньше, чем на поверхности раздела того же тела с жидкостью; иначе говоря, в этом случае при продвижении жидкости по поверхности твердого тела работа не будет производиться, но, напротив, работу нужно будет затратить, чтобы осуществить такое продвижение жидкости).

При полном смачивании краевой угол а при полном отсутствии смачивания Краевой угол зависит от природы соприкасающихся веществ и от температуры. Если наклонять стенку сосуда, краевой угол от этого не меняется.

Формула (12) объясняет форму капли, лежащей на горизонтальной плоскости. На твердой подставке, которая смачивается жидкостью, капля принимает форму, изображенную на рис. 230; если же подставка не смачивается, то получается форма капли, изображенная на рис. 231, где краевой угол - тупой.

Рис. 230. Капля смачивающей жидкости.

Рис. 231. Капля несмачивающей жидкости.

Совершенно чистое стекло вполне смачивается водой, этиловым спиртом, метиловым спиртом, хлороформом, бензолом. Для ртути на чистом стекле краевой угол составляет 52° (для свежеобразованной капли 41°), для скипидара 17°, для эфира 16°.

Когда жидкость вполне смачивает подставку, то капли не возникает, а жидкость растекается по всей поверхности. Это происходит, например, с каплей воды на абсолютно чистой стеклянной пластинке. Но обыкновенно стеклянная пластинка бывает несколько загрязнена, что препятствует растеканию капли и создает измеримый краевой угол.

Рис. 232. Масляная капля на воде

Соображения, на основе которых была получена формула можно применить также и к случаю, когда вместо твердого тела мы имеем вторую жидкость, например, когда масляная капля плавает на поверхности воды (рис. 232). Но в этом случае направления сил Уже не противоположны; при соприкосновении жидкости с твердым телом нормальная составляющая поверхностного

натяжения уравновешивается сопротивлением твердой стенки, а при соприкосновении жидкостей это не имеет места; поэтому в данном случае условие равновесия должно быть записано иначе, а именно как равенство полной силы и геометрической суммы (взятой с обратным знаком) сил

Если, например, на воде плавает оливковое масло, то дин/см, дин/см и дан/см. Таким образом, здесь поверхностное натяжение на границе воздуха и воды больше суммы обоих поверхностных натяжений, которые имеет масло по отношению как к воздуху, так и к воде; мы будем поэтому иметь неограниченное растекание капли. Толщина масляного слоя дойдет до размеров одной молекулы (примерно см), а затем слой станет распадаться. Но если вода загрязнена, то ее поверхностное натяжение делается меньше, и тогда на поверхности может оставаться большая масляная капля, после того как по воде распространился очень тонкий слой масла.

Жидкость, проникающая вследствие действия молекулярных сил в тонкий зазор между двумя поверхностями твердых тел, оказывает на эти поверхности расклинивающее действие. Расклинивающее действие тонких слоев жидкости было экспериментально доказано искусными опытами проф. Б. В. Дерягина, который разработал также теорию этого явления и объяснил на основе расклинивающего действия жидкости эффект Ребиндера (§ 46).

Решим следующую задачу (задача Банаха). Некто носит в кармане две коробки спичек (по 60 спичек каждая) и всякий раз, когда нужна спичка, наугад берет коробку и вынимает спичку. Какова вероятность того, что когда первая коробка будет пуста, во второй все еще останется 20 спичек? Выбор коробки можно рассматривать как независимое испытание, в котором с вероятностью выбирается первая коробка. Всего опытов производитсяn = 60+40=100, и в этих ста опытах первая коробка должна быть выбрана 60 раз. Вероятность этого равна:

.

Из записи видно, что при больших n пользоваться формулой Бернулли затруднительно из-за громоздких вычислений. Существуют специальные приближенные формулы, которые позволяют находить вероятности
, еслиn велико. Одну из таких формул дает следующая теорема.

Теорема 2.1. (Лапласа локальная). Если в схеме Бернулли
, то вероятность того, что событиеA наступит ровноk раз, удовлетворяет при большихn соотношению

где
.

Для удобства вводится в рассмотрение функция
– локальная функция Лапласа, с помощью которой теорему Лапласа можно записать так:

Существуют специальные таблицы функции
, по которым для любого значения:
можно найти соответствующее значение функции. Получены эти таблицы путем разложения функции
в ряд.

Геометрически этот результат означает, что для больших n многоугольник распределения хорошо вписывается в график функции, стоящей в формуле справа (рис. 2.3) и вместо истинного значения вероятности
можно для каждогоk брать значение функции в точкеk .

Рис. 2.3. Локальная функция Лапласа

Вернемся теперь к задаче. Используя формулу (2.1) находим:

,

где значение
определено по таблице .

2.2.2. Интегральная теорема Лапласа

Теорема 2.2 (Лапласа интегральная). Вероятность того, что в схемеn независимых испытаний событие наступит отk 1 доk 2 раз, приближенно равна

P n (k 1
k
2 )
,

– интегральная функция Лапласа, для которой составлены таблицы. ФункцияФ(х) нечетная:Ф(-х)=-Ф(х) иФ (х4)=0,5.

Рассмотрим пока без доказательства еще одно утверждение.

Отклонение относительной частоты от вероятностиp вn независимых испытаниях равно

(

.

Замечание. Обоснование этих фактов будет рассмотрено далее в разделе 7 (подразд. 7.2, 7.3). Теоремы Лапласа иногда называют теоремами Муавра–Лапласа.

Пример 2.3.

Вероятность появления события в каждом из 900 независимых испытаний равна 0.5. 1) найти вероятность того, что событие произойдет от 400 до 500 раз, 2) найти вероятность того, что относительная частота появления события отклонится от его вероятности по абсолютной величине не более чем на 0,02.

Решение

1) Р 900 (400<k <500)=
=

2)

=

2.3. Формула Пуассона

Если зафиксировать число опытов n , а вероятность появления события в одном опытер изменять, то многоугольник распределения будет иметь различный вид в зависимости от величиныр (рис.2.4). При значенияхp , близких к 1/2, многоугольник почти симметричен и хорошо вписывается в симметричный график функции Лапласа. Поэтому приближенная формула Лапласа дает хорошую точность.

Для малых р (на практике меньших) приближение плохое из-за несимметричности многоугольника распределения. Поэтому возникает задача найти приближенную формулу для вычисления вероятностей
в случае большихn и малых р . Ответ на этот вопрос дает формула Пуассона.

Итак, рассмотрим схему независимых испытаний, в которой n велико (чем больше, тем лучше), ар мало (чем меньше, тем лучше). Обозначимn р =λ . Тогда по формуле Бернулли имеем

.

Последнее равенство верно в силу того, что
(второй замечательный предел). При получении формулы наивероятнейшего числа появления событияk 0 было рассмотрено отношение вероятностей. Из него следует, что

Таким образом, при k много меньшихn имеем рекуррентное соотношение

.

Для k =0 учтем полученный ранее результат:
, тогда

………………

Итак, если в схеме независимых испытаний nвелико, ар мало, то имеет местоформула Пуассона

Р n (к)
, где λ= n р.

Закон Пуассона еще называют законом редких явлений.

Пример 2.4.

Вероятность выпуска бракованной детали равна 0,02. Детали упаковываются в коробки по 100 штук. Какова вероятность того, что а) в коробке нет бракованных деталей, б) в коробке больше двух бракованных деталей?

Решение

a ) Так какn велико, ар мало, имеем ; Р 100 (0)
;

б )Р 100 (k >2)= 1-Р 1-

Таким образом, в схеме независимых испытаний для вычисления вероятности Р n (k ) следует пользоваться формулой Бернулли, еслиn невелико, а еслиn велико, то в зависимости от величиныр используется одна из приближенных формул Лапласа или формула Пуассона.

При достаточно большом формула Бернулли дает громоздкие вычисления. Поэтому в таких случаях применяют локальную теорему Лапласа.

Теорема (локальная теорема Лапласа). Если вероятностьpпоявления события А в каждом испытании постоянна и отлична от 0 и 1, то вероятность
того, что событие А появится вnнезависимых испытаниях ровноkраз, приближенно равна значению функции:

,

.

Имеются таблицы, в которых находятся значения функции
, для положительных значенийx.

Заметим, что функция
четна.

Итак, вероятность того, что событие А появится в nиспытаниях ровноkраз приближенно равна

, где
.

Пример. На опытном поле посеяли 1500 семян. Найти вероятность того, что всходы дадут 1200 семян, если вероятность того, что зерно взойдет, равна 0,9.

Решение.

Интегральная теорема Лапласа

Вероятность того, что в nнезависимых испытаниях событие А появится не менееk1 раз и не болееk2 раз вычисляется по интегральной теореме Лапласа.

Теорема (интегральная теорема Лапласа). Если вероятность р наступления события а в каждом испытании постоянна и отлична от 0 и 1, то вероятность того, что событие А вnиспытаниях появится не менееk 1 раз и не болееk 2 раз приближенно равна значению определенного интеграла:

.

Функция
называется интегральной функцией Лапласа, она нечетна и ее значение находятся по таблице для положительных значенийx.

Пример. В лаборатории из партии семян, имеющих всхожесть 90%, высеяно 600 семян, давших всходы, не менее 520 и не более 570.

Решение.

Формула Пуассона

Пусть производится nнезависимых испытаний, вероятность появления события А в каждом испытании постоянна и равна р. Как мы уже говорили, вероятность появления события А вnнезависимых испытаниях ровноkраз можно найти по формуле Бернулли. При достаточно большомnиспользуют локальную теорему Лапласа. Однако, эта формула непригодна, когда вероятность появления события в каждом испытании мала или близка к 1. А при р=0 или р=1 вообще не применима. В таких случаях пользуются теоремой Пуассона.

Теорема (теорема Пуассона). Если вероятность р наступления события А в каждом испытании постоянна и близка к 0 или 1, а число испытаний достаточно велико, то вероятность того, что вnнезависимых испытаниях событие А появится ровноkраз находится по формуле:

.

Пример. Рукопись объемом в тысячу страниц машинописного текста содержит тысячу опечаток. Найти вероятность того, что наудачу взятая страница содержит хотя бы одну опечатку.

Решение.

Вопросы для самопроверки

    Сформулируйте классическое определение вероятности события.

    Сформулируйте теоремы сложения и умножения вероятностей.

    Дайте определение полной группы событий.

    Запишите формулу полной вероятности.

    Запишите формулу Бейеса.

    Запишите формулу Бернулли.

    Запишите формулу Пуассона.

    Запишите локальную формулу Лапласа.

    Запишите интегральную формулу Лапласа.

Тема 13. Случайная величина и ее числовые характеристики

Литература: ,,,,,.

Одним из основных понятий в теории вероятностей является понятие случайной величины. Так принято называть переменную величину, которая принимает свои значения в зависимости от случая. Различают два вида случайных величин: дискретные и непрерывные. Случайные величины принято обозначать X,Y,Z.

Случайная величина Х называется непрерывной (дискретной), если она может принимать лишь конечное или счетное число значений. Дискретная случайная величина Х определена, если даны все ее возможные значения х 1 , х 2 , х 3 ,…х n (число которых может быть как конечным, так и бесконечным) и соответствующие вероятности р 1 , р 2 , р 3 ,…р n .

Закон распределения дискретной случайной величины Х обычно задается таблицей:

Первая строка состоит из возможных значений случайной величины Х, а во второй строке указаны вероятности этих значений. Сумма вероятностей, с которыми случайная величина Х принимает все свои значения, равна единице, то есть

р 1 +р 2 + р 3 +…+р n =1.

Закон распределения дискретной случайной величины Х можно изобразить графически. Для этого в прямоугольной системе координат строят точки М 1 (х 1 ,р 1), М 2 (х 2 ,р 2), М 3 (х 3 ,р 3),…М n (x n ,p n) и соединяют их отрезками прямых. Полученную фигуру называют многоугольником распределения случайной величины Х.

Пример. Дискретная величина Х задана следующим законом распределения:

Требуется вычислить: а) математическое ожидание М(Х), б) дисперсию D(X), в) среднее квадратическое отклонение σ.

Решение. а) Математическое ожидание М(Х), дискретной случайной величины Х называется сумма попарных произведений всех возможных значений случайной величины на соответствующие вероятности этих возможных значений. Если дискретная случайная величина Х задана с помощью таблицы (1), то математическое ожидание М(Х) вычисляется по формуле

М(Х)=х 1 ∙р 1 +х 2 ∙р 2 +х 3 ∙р 3 +…+х n ∙p n . (2)

Математическое ожидание М(Х) называют также средним значением случайной величины Х. Применяя (2), получим:

М(Х)=48∙0,2+53∙0,4+57∙0,3 +61∙0,1=54.

б) Если М(Х) есть математическое ожидание случайной величины Х, то разность Х-М(Х) называется отклонением случайной величины Х от среднего значения. Эта разность характеризует рассеяние случайной величины.

Дисперсией (рассеянием) дискретной случайной величины Х называется математическое ожидание (среднее значение) квадрата отклонения случайной величины от ее математического ожидания. Таким образом, по самому определению имеем:

D(X)=M 2 . (3)

Вычислим все возможные значения квадрата отклонения.

2 =(48-54) 2 =36

2 =(53-54) 2 =1

2 =(57-54) 2 =9

2 =(61-54) 2 =49

Чтобы вычислить дисперсию D(X), составим закон распределения квадрата отклонения и затем применим формулу (2).

D(X)= 36∙0,2+1∙0,4+9∙0,3 +49∙0,1=15,2.

Следует отметить, что для вычисления дисперсии часто используют следующее свойство: дисперсия D(X) равна разности между математическим ожиданием квадрата случайной величины Х и квадратом ее математического ожидания, то есть

D(X)-M(X 2)- 2 . (4)

Чтобы вычислить дисперсию по формуле (4), составим закон распределения случайной величины Х 2:

Теперь найдем математическое ожидание М(Х 2).

М(Х 2)= (48) 2 ∙0,2+(53) 2 ∙0,4+(57) 2 ∙0,3 +(61) 2 ∙0,1=

460,8+1123,6+974,7+372,1=2931,2.

Применяя (4), получим:

D(X)=2931,2-(54) 2 =2931,2-2916=15,2.

Как видно, мы получили такой же результат.

в) Размерность дисперсии равна квадрату размерности случайной величины. Поэтому для характеристики рассеяния возможных значений случайной величины вокруг ее среднего значения более удобно рассматривать величину, которая равна арифметическому значению корня квадратного из дисперсии, то есть
. Эту величину называют средним квадратическим отклонением случайной величины Х и обозначают через σ. Таким образом

σ=
. (5)

Применяя (5), имеем: σ=
.

Пример. Случайная величина Х распределена по нормальному закону. Математическое ожидание М(Х)=5; дисперсияD(X)=0,64. Найти вероятность того, что в результате испытания Х примет значение в интервале (4;7).

Решение .Известно, что если случайная величина Х задана дифференциальной функциейf(x), то вероятность того, что Х примет значение, принадлежащее интервалу (α,β), вычисляется по формуле

. (1)

Если величина Х распределена по нормальному закону, то дифференциальная функция

,

где а =М(Х) и σ=
. В этом случае получаем из (1)

. (2)

Формулу (2) можно преобразовать, используя функцию Лапласа.

Сделаем подстановку. Пусть
. Тогда
илиdx =σ∙ dt .

Следовательно
, гдеt 1 иt 2 соответствующие пределы для переменнойt.

Сократив на σ, будем иметь

Из введенной подстановки
следует, что
и
.

Таким образом,

(3)

По условию задачи имеем: а=5; σ=
=0,8; α=4; β=7. Подставив эти данные в (3), получим:

=Ф(2,5)-Ф(-1,25)=

=Ф(2,5)+Ф(1,25)=0,4938+0,3944=0,8882.

Пример. Считается, что отклонение длины изготавливаемых деталей от стандарта является случайной величиной, распределенной по нормальному закону. Стандартная длина (математическое ожидание) а=40 см, среднее квадратическое отклонение σ=0,4 см. Найти вероятность того, что отклонение длины от стандартной составит по абсолютной величине не более 0,6 см.

Решение .Если Х – длина детали, то по условию задачи эта величина должна быть в интервале (а-δ,а+δ), где а=40 и δ=0,6.

Положив в формулу (3) α= а-δ и β= а+δ, получим

. (4)

Подставив в (4) имеющиеся данные, получим:

Следовательно, вероятность того, что изготавливаемые детали по длине будут в пределах от 39,4 до 40,6 см, составляет 0,8664.

Пример. Диаметр деталей, изготавливаемых заводом, является случайной величиной, распределенной по нормальному закону. Стандартная длина диаметраа=2,5 см, среднее квадратическое отклонение σ=0,01. В каких границах можно практически гарантировать длину диаметра этой детали, если за достоверное принимается событие, вероятность которого равна 0,9973?

Решение. По условию задачи имеем:

а=2,5; σ=0,01; .

Применяя формулу (4), получаем равенство:

или
.

По таблице 2 находим, что такое значение функция Лапласа имеет при х=3. Следовательно,
; откуда σ=0,03.

Таким образом, можно гарантировать, что длина диаметра будет изменяться в пределах от 2,47 до 2,53 см.

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

Курсовая работа

По курсу «Подземная гидромеханика»

Тема: «Вывод уравнения Лапласа. Плоские задачи теории фильтрации»


Введение

1. Дифференциальные уравнения движения сжимаемой и несжимаемой жидкости в пористой среде. Вывод уравнения Лапласа.

2.1 Приток к совершенной скважине

2.1.1 Фильтрационный поток от нагнетательной скважины к эксплуатационной

2.1.2 Приток к группе скважин с удаленным контуром питания

2.1.3 Приток к скважине в пласте с прямолинейным контуром питания

2.1.4 Приток к скважине, расположенной вблизи непроницаемой прямолинейной границы

2.1.5 Приток к скважине в пласте с произвольным контуром питания

2.1.6 Приток к бесконечным цепочкам и кольцевым батареям скважин

2.1.6.1 Приток к скважинам кольцевой батареи

2.1.6.2 Приток к прямолинейной батареи скважин

2.1.7 Метод эквивалентных фильтрационных сопротивлений

Литература


Введение

Подземная гидромеханика - наука о движении жидкостей, газов и их смесей в пористых и трещиноватых горных породах - теоретическая основа разработки нефтяных и газовых месторождений, одна из профилирующих дисциплин в учебном плане промыслового и геологического факультетов нефтяных вузов.

В основе подземной гидравлики лежит представление о том, что нефть, газ и вода, заключенные в пористой среде, составляют единую гидравлическую систему.

Теоретической основой ПГД является теория фильтрации - наука, описывающая данное движение флюида с позиций механики сплошной среды, т.е. гипотезы сплошности (неразрывности) течения.

Особенностью теории фильтрации нефти и газа в природных пластах является одновременное рассмотрение процессов в областях, характерные размеры которых различаются на порядки: размер пор (до десятков микрометров), диаметр скважин (до десятков сантиметров), толщины пластов (до десятков метров), расстояния между скважинами (сотни метров), протяженность месторождений (до сотен километров).

В данной курсовой работе выводится основное уравнение Лапласа и рассматриваются плоские задачи теории фильтрации, а так же их решение.


1. Дифференциальные уравнения движения сжимаемой и несжимаемой жидкости в пористой среде. Вывод уравнения Лапласа

При выводе дифференциального уравнения движения сжимаемой жидкости исходными уравнениями являются следующие:

закон фильтрации жидкости; в качестве закона фильтрации принимаем линейный закон фильтрации, выражающийся формулами (3.1)

, (3.1)

уравнение неразрывности (3.2)

, (3.2)

уравнение состояния. Для капельной сжимаемой жидкости уравнение состояния может быть представлено в виде (3.3)

, (3.3) - плотность жидкости при атмосферном давлении .

Подставляя в уравнение неразрывности (3.2) вместо проекций скорости фильтрации vx, vy и vz их значения из линейного закона, выражающегося формулой (3.1), получим:

, (3.4)

уравнения состояния (3.3) имеем:

, (3.5) , , . (3.6)

Подставляя эти значения частных производных

, и в уравнение (3.4), получим:

Вводя оператор Лапласа


уравнение (3.7) более кратко можно написать в виде

, (3.8)

Учитывая, что

, (3.9)

уравнение (3.7) можно приближенно представить в виде:

,(3.10)

Уравнение (3.7) или приближенное заменяющее его уравнение (3.10) есть искомое дифференциальное уравнение неустановившегося движения сжимаемой жидкости в пористой среде. Упомянутые уравнения имеют вид «уравнения теплопроводности», интегрирование которого при различных начальных и граничных условиях рассматривается в каждом курсе математической физики.

Решение различных задач о неустановившемся движении однородной сжимаемой жидкости в пористой среде, основанное на интегрировании уравнения (3.7) при различных начальных и граничных условиях, дается в книгах В. Н. Щелкачева, И. А. Чарного и М.Маскета. При установившемся движении сжимаемой жидкости

и вместо уравнения (3.7) имеем: , (3.11)

Уравнение (3.11) называется уравнением Лапласа.

При установившейся и неустановившейся фильтрации несжимаемой жидкости плотность жидкости постоянна следовательно, величина, стоящая в правой части уравнения (3.4), равна нулю. Сокращая левую часть этого уравнения на постоянную

и выполнив дифференцирование, получим: , (3.12)

Таким образом, установившаяся и неустановившаяся фильтрация несжимаемой жидкости описывается уравнением Лапласа (3.12).


2. Плоские задачи теории фильтрации

При разработке нефтяных и газовых месторождений (НГМ) возникает два вида задач:

1. Задаётся дебит скважин и требуется определить необходимое для этого дебита забойное давление и, кроме того, давление в любой точке пласта. В данном случае величина дебита определяется значением предельной для имеющихся коллекторов депрессией, при которой ещё не наступает их разрушение, или прочностными характеристиками скважинного оборудования, или физическим смыслом. Последнее означает, например, невозможность установления нулевого или отрицательного забойного давления.

2. Задаётся забойное давление и требуется определить дебит. Последний вид условия встречается наиболее часто в практике разработки НГМ. Величина забойного давления определяется условиями эксплуатации. Например, давление должно быть больше давления насыщения для предотвращения дегазации нефти в пласте или выпадения конденсата при разработке газоконденсатных месторождений, что снижает продуктивные свойства скважин. Наконец, если возможен вынос песка из пласта на забой скважины, то скорость фильтрации на стенке скважины должна быть меньше некоторой предельной величины.

Замечено, что при эксплуатации группы скважин в одинаковых условиях, т.е. с одинаковым забойным давлением, дебит всего месторождения растёт медленнее увеличения числа новых скважин с теми же забойными условиями (рис.4.1). Увеличение дебита при этом требует понижения забойного давления.

Для решения поставленных задач решим задачу плоской интерференции (наложения) скважин. Предположим, что пласт - неограниченный, горизонтальный, имеет постоянную мощность и непроницаемые подошву и кровлю. Пласт вскрыт множеством совершенных скважин и заполнен однородной жидкостью или газом. Движение жидкости - установившееся, подчиняется закону Дарси и является плоским. Плоское движение означает, что течение происходит в плоскостях, параллельных между собой и картина движения во всех плоскостях идентична. В связи с этим разбирается течение в одной из этих плоскостей - в основной плоскости течения.

Решение задач будем строить на принципе суперпозиции (наложения) потоков. Основанный на этом принципе метод суперпозиции заключается в следующем.

При совместном действии в пласте нескольких стоков (эксплуатационных скважин) или источников (нагнетательных скважин) потенциальная функция, определяемая каждым стоком (источником), вычисляется по формуле для единственного стока (источника). Потенциальная функция, обусловленная всеми стоками (источниками), вычисляется путём алгебраического сложения этих независимых друг от друга значений потенциальной функции. Суммарная скорость фильтрации определяется как векторная сумма скоростей фильтрации, вызванная работой каждой скважины (рис.4.2b).

Пусть в неограниченном пласте действует n стоков с положительным массовым дебитом G и источников с отрицательным дебитом (рис. 4.2a).. Поток в окрестности каждой скважины в этом случае плоскорадиален и потенциал

,(4.1)

Свойства жидкого состояния. Поверхностный слой. Поверхностное натяжение. Смачивание. Формула Лапласа. Капиллярные явления.

Жидкостями называются вещества, находящиеся в конденсированном состоянии, которое является промежуточным между твердым кристаллическим состоянием и газообразным состоянием.

Область существования жидкостей ограничена со стороны высоких температур переходом ее в газообразное состояние, со стороны низких температур – переходом в твердое состояние.

В жидкостях расстояние между молекулами значительно меньше, чем в газах (плотность жидкостей в ~ 6000 раз больше плотности насыщенного пара вдали от критической температуры) (рис.1).

Рис.1. Водяной пар (1) и вода (2). Молекулы воды увеличены примерно в 5·10 7 раз

Следовательно, силы межмолекулярного взаимодействия в жидкостях, в отличие от газов, являются основным фактором, который определяет свойства жидкостей. Поэтому жидкости, как и твердые тела, сохраняют свой объем и имеют свободную поверхность. Подобно твердым телам жидкости характеризуются очень малой сжимаемостью и сопротивляются растяжению.

Однако силы связей между молекулами жидкости не настолько велики, чтобы препятствовать скольжению слоев жидкости относительно друг друга. Поэтому жидкости, как и газы, обладают текучестью. В поле силы тяжести жидкости принимают форму сосуда, в который они налиты.

Свойства веществ определяются движением и взаимодействием частиц, из которых они состоят.

В газах в столкновениях участвуют в основном две молекулы. Следовательно, теория газов сводится к решению задачи двух тел, которая может быть решена точно. В твердых телах молекулы совершают колебательное движение в узлах кристаллической решетки в периодическом поле, созданном другими молекулами. Такая задача поведения частиц в периодическом поле так же решается точно.

В жидкостях каждую молекулу окружают несколько других. Задача подобного типа (задача многих тел) в общем, виде, независимо от природы молекул, характера их расположения до сих пор точно не решена.

Опыты по дифракции рентгеновских лучей, нейтронов, электронов помогли определить строение жидкостей. В отличие от кристаллов, в которых наблюдается дальний порядок (регулярность размещения частиц в больших объемах), в жидкостях на расстояниях порядка 3 – 4 молекулярных диаметров порядок в размещении молекул нарушается. Следовательно, в жидкостях наблюдается так называемый ближний порядок в размещении молекул (рис.2):

Рис.2. Пример ближнего порядка молекул жидкости и дальнего порядка молекул кристаллического вещества: 1 – вода; 2 – лед

В жидкостях молекулы совершают малые колебания в пределах ограниченных межмолекулярными расстояниями. Однако время от времени в результате флуктуаций молекула может получить от соседних молекул энергию, которой хватит, чтобы скачком переместиться в новое положение равновесия. В новом положении равновесия молекула будет находиться некоторое время, пока снова, в результате флуктуаций не получит энергию необходимую для скачка. Скачок молекулы происходит на расстояние сравнимое с размерами молекулы. Колебания, которые сменяются скачками, представляют собой тепловое движение молекул жидкости.

Среднее время, которое молекула находится в состоянии равновесия, называется временем релаксации . При повышении температуры увеличивается энергия молекул, следовательно, увеличивается вероятность флуктуаций, время релаксации при этом уменьшается:

(1)

где τ – время релаксации, B – коэффициент, имеющий смысл периода колебаний молекулы, W энергия активации молекулы, т.е. энергия необходимая для совершения скачка молекулы .

Внутреннее трение в жидкостях, как и в газах, возникает при движении слоев жидкости из-за переноса импульса в направлении нормали к направлению движения слоев жидкости. Перенос импульса от слоя к слою происходит и при скачках молекул. Однако, в основном, импульс переносится из-за взаимодействия (притяжения) молекул соседних слоев.

В соответствии с механизмом теплового движения молекул жидкости, зависимость коэффициента вязкости от температуры имеет вид:

(2)

где A – коэффициент, зависящий от дальности скачка молекулы, частоты ее колебаний и температуры, W энергия активации .

Уравнение (2) – формула Френкеля-Андраде . Температурная зависимость коэффициента вязкости в основном определяется экспоненциальным множителем.

Величина обратная вязкости называется текучестью . При понижении температуры вязкость некоторых жидкостей увеличивается настолько, что они практически перестают течь, образуя аморфные тела (стекло, пластмассы, смолы и т.д.).

Каждая молекула жидкости взаимодействует с соседними молекулами, которые находятся в зоне действия ее молекулярных сил. Результаты этого взаимодействия неодинаковые для молекул внутри жидкости и на поверхности жидкости. Молекула, находящаяся внутри жидкости взаимодействует с соседними молекулами окружающими ее и, равнодействующая сила, которая на нее действует, равна нулю (рис.3).

Рис.3. Силы, действующие на молекулы жидкости

Молекулы поверхностного слоя находятся при других условиях. Плотность пара над жидкостью значительно меньше плотности жидкости. Поэтому на каждую молекулу поверхностного слоя действует равнодействующая сила, направленная по нормали внутрь жидкости (рис.3). Поверхностный слой оказывает давление на остальную жидкость подобно упругой пленке. Молекулы, лежащие в этом слое также притягиваются друг к другу (рис.4).

Рис.4. Взаимодействие молекул поверхностного слоя

Это взаимодействие создает силы направленные по касательной к поверхности жидкости и стремящиеся сократить поверхность жидкости.

Если на поверхности жидкости провести произвольную линию, то по нормали к линии и по касательной к поверхности будут действовать силы поверхностного натяжения. Величина этих сил пропорциональна числу молекул, находящихся вдоль этой линии, следовательно, пропорциональна длине линии:

(3)

где σ – коэффициент пропорциональности, который называется коэффициентом поверхностного натяжения :

(4)

Коэффициент поверхностного натяжения численно равен силе поверхностного натяжения, действующей на единицу длины контура, ограничивающего поверхность жидкости .

Коэффициент поверхностного натяжения измеряется в Н/м. Величина σ зависит от рода жидкости, температуры, наличия примесей. Вещества, которые уменьшают поверхностное натяжение, называются поверхностно - активными (спирт, мыло, стиральный порошок и т.д.).

Чтобы увеличить площадь поверхности жидкости, необходимо выполнить работу против сил поверхностного натяжения. Определим величину этой работы. Пусть имеется рамка с жидкой пленкой (например, мыльной) и подвижной перекладиной (рис.5).

Рис.5. Подвижная сторона проволочной рамки находится в равновесии под действием внешней силы F вн и результирующей сил поверхностного натяжения F н

Растянем пленку силой F вн на dx . Очевидно:

где F н = σL –сила поверхностного натяжения. Тогда:

где dS = Ldx – приращение площади поверхности пленки. Из последнего уравнения:

(5)

Согласно (5) коэффициент поверхностного натяжения численно равен работе необходимой для увеличения площади поверхности на единицу при постоянной температуре. Из (5) видно, что σ может измеряться в Дж/м 2 .

Если жидкость граничит с другой жидкостью или с твердым телом, то из-за того, что плотности соприкасающихся веществ сравнимые, нельзя не обращать внимания на взаимодействие молекул жидкости с молекулами граничащих с ней веществ.

Если при контакте жидкости и твердого тела взаимодействие между их молекулами более сильное, чем взаимодействие между молекулами самой жидкости, то жидкость стремится увеличить поверхность соприкосновения и растекается по поверхности твердого тела. В этом случае жидкость смачивает твердое тело . Если взаимодействие между молекулами жидкости сильнее, чем взаимодействие между молекулами жидкости и твердого тела, то жидкость сокращает поверхность соприкосновения. В этом случае жидкость не смачивает твердое тело . Например: вода смачивает стекло, но не смачивает парафин, ртуть смачивает поверхности металлов, но не смачивает стекло.

Рис.6. Различные формы капли на поверхности твердого тела для случаев несмачивающей (а) и смачивающей (б) жидкостей

Рассмотрим каплю жидкости на поверхности твердого тела (рис.7):

Рис.7. Схемы к расчету равновесия капли на поверхности твердого тела для случаев несмачивающей (а) и смачивающей (б) жидкостей: 1 - газ, 2 - жидкость, 3 - твердое тело

Форма капли определяется взаимодействием трех сред: газа – 1, жидкости – 2 и твердого тела – 3. У всех этих сред есть общая граница – окружность, ограничивающая каплю. На элемент длины dl этого контура, будут действовать силы поверхностного натяжения: F 12 = σ 12 dl – между газом и жидкостью, F 13 = σ 13 dl - между газом и твердым телом, F 23 = σ 23 dl – между жидкостью и твердым телом. Если dl =1м, то F 12 = σ 12 , F 13 = σ 13 , F 23 = σ 23 . Рассмотрим случай когда:

Это значит, что <θ = π (рис.7,а). Окружность, которая ограничивает место соприкосновения жидкости с твердым телом, будет стягиваться в точку и капля принимает эллипсоидальную или сферическую форму. Это случай полного несмачивания. Полное несмачивание наблюдается также и в случае: σ 23 > σ 12 + σ 13 .

Другой граничный случай будет наблюдаться если:

Это значит, что <θ = 0 (рис.7,б), наблюдается полное смачивание. Полное смачивание будет наблюдаться и в случае когда: σ 13 > σ 12 + σ 23 . В этом случае равновесия не будет, ни при каких значениях угла θ , и жидкость будет растекаться по поверхности твердого тела вплоть до мономолекулярного слоя.

Если капля находится в равновесии, то равнодействующая всех сил, действующих на элемент длины контура равна нулю. Условие равновесия в этом случае:

Угол между касательными к поверхности твердого тела и к поверхности жидкости, который отсчитывается внутри жидкости , называется краевым углом .

Его значение определяется из (6):

(7)

Если σ 13 > σ 23 , то cosθ > 0, угол θ острый – имеет место частичное смачивание, если σ 13 < σ 23 , то cosθ < 0 – угол θ тупой – имеет место частичное несмачивание. Таким образом, краевой угол является величиной, характеризующей степень смачивания или несмачивания жидкости

Кривизна поверхности жидкости приводит к возникновению добавочного давления, действующего на жидкость под этой поверхностью. Определим величину добавочного давления под искривленной поверхностью жидкости. Выделим на произвольной поверхности жидкости элемент площадью ∆S (рис.8):

Рис.8. К расчету величины добавочного давления

O O – нормаль к поверхности в точке O . Определим силы поверхностного натяжения действующие на элементы контура AB и CD . Силы поверхностного натяжения F и F ′, которые действуют на AB и CD , перпендикулярны AB и CD и направлены по касательной к поверхности ∆S . Определим величину силы F :

Разложим силу F на две составляющих f 1 и f ′. Сила f 1 параллельна O O и направлена внутрь жидкости. Эта сила увеличивает давление на внутренние области жидкости (вторая составляющая растягивает поверхность и на величину давления не влияет).

Проведем плоскость перпендикулярную ∆S через точки M , O и N . Тогда R 1 – радиус кривизны поверхности в направлении этой плоскости. Проведем плоскость перпендикулярную ∆S и первой плоскости. Тогда R 2 – радиус кривизны поверхности в направлении этой плоскости. В общем случае R 1 ≠ R 2 . Определим составляющую f 1 . Из рисунка видно:

Учтем, что:

(8)

Силу F ′ разложим на такие же две составляющих и аналогично определим составляющую f 2 (на рисунке не показана):

(9)

Рассуждая аналогично, определим составляющие сил действующих на элементы AC и BD , учитывая, что вместо R 1 будет R 2:

(10)

Найдем сумму всех четырех сил, действующих на контур ABDC и оказывающих добавочное давление на внутренние области жидкости:

Определим величину добавочного давления:

Следовательно:

(11)

Уравнение (11) называется формулой Лапласа . Добавочное давление, которое оказывает искривленная поверхность жидкости на внутренние области жидкости, называется лапласовским давлением .

Лапласовское давление очевидно направлено к центру кривизны поверхности. Поэтому в случае выпуклой поверхности оно направлено внутрь жидкости и добавляется к нормальному давлению жидкости. В случае вогнутой поверхности жидкость будет находиться под меньшим давлением, чем жидкость под плоской поверхностью, т.к. лапласовское давление направлено за пределы жидкости.

Если поверхность сферическая, то: R 1 = R 2 = R :

Если поверхность цилиндрическая, то: R 1 = R , R 2 = ∞:

Если поверхность плоская то: R 1 = ∞, R 2 = ∞:

Если поверхностей две, например, мыльный пузырь, то лапласовское давление удваивается.

С явлениями смачивания и несмачивания связаны так называемые капиллярные явления . Если в жидкость опустить капилляр (трубка малого диаметра), то поверхность жидкости в капилляре принимает вогнутую форму, близкую к сферической в случае смачивания и выпуклую в случае несмачивания. Такие поверхности называются менисками .

Капиллярами называются такие трубки, в которых радиус мениска примерно равен радиусу трубки.

Рис. 9. Капилляр в смачивающей (а) и не смачивающей (б) жидкостях

Рис.10. Подъем жидкости в капилляре в случае смачивания

В случае вогнутого мениска добавочное давление направленно к центру кривизны вне жидкости. Поэтому давление под мениском меньше давления под плоской поверхностью жидкости в сосуде на величину лапласовского давления:

R – радиус мениска, r – радиус капиллярной трубки.

Следовательно, лапласовское давление вызовет подъем жидкости в капилляре на такую высоту h (рис.9), пока гидростатическое давление столба жидкости не уравновесит лапласовское давление:

Из последнего уравнения:

(12)

Уравнение (12) называется формулой Жюрена . Если жидкость несмачивает стенки капилляра, мениск выпуклый, cosθ < 0, то жидкость в этом случае опускается ниже уровня жидкости в сосуде на такую же глубину h согласно формуле (12) (рис.9).

Выбор редакции
Денежная единица РФ "...Статья 27. Официальной денежной единицей (валютой) Российской Федерации является рубль. Один рубль состоит из 100...

Техника "100 желаний" Научиться исполнять желания может каждый. Для этого нужно всего лишь договориться со своим подсознанием! А как это...

Получив атеистическое воспитание, я долгое время не испытывал интереса, а уж тем более священного трепета от религиозных святынь да...

Скакать во сне на белой лошади - прекрасный знак. В первую очередь он сулит Вам прочность дружеских связей и радость встреч с товарищами...
Заранее говорю, никогда не пробовала делать с другим сыром, только с твердыми сортами. В данном рецепте я использовала остатки трех...
Будьте чуткими к изменениям настроения любимых людей! Помните: мы получаем от мира ровно то, что ему даем. Хотите, чтобы окружающие...
Татуировка - практически такое же древнее явление, как и существование человечества. Тату были обнаружены даже на телах мумий, найденных...
Святой Спиридон Тримифунтский - очень почитаемый подвижник во всем христианском мире. К его мощам, на острове Корфу в Греции, постоянно...
Праздники, кто же их не любит? А что же легло в основу праздника День Народного Единства в России ? Праздник единства подчеркивает: какой...