Метод половинного деления пример с решением. Теория нелинейных уравнений и метод половинного деления


Метод половинного деления

Считаем, что отделение корней уравнения f (x ) = 0 проведено и на отрезке [ a , b ] расположен один корень, который необходимо уточнить с погрешностью ε. В качестве начального приближения корня принимаем середину этого отрезка: c 0 = (a + b) / 2 (рис. 4):

Рис. 4. Метод половинного деления.

Затем исследуем значение функции f (x ) на концах отрезков [ a , c 0 ] и [ c 0 , b ] . Тот из отрезков, на концах которого f (x ) принимает значения разных знаков, содержит искомый корень; поэтому его принимаем в качестве нового отрезка [ a 1 , b 1 ] (на рис. 4 это отрезок [ a , c 0 ]). Вторую половину отрезка [ a , b ], на которой f (x ) не меняет знак, отбрасываем. В качестве следующего приближения корня принимаем середину нового отрезка
c 1 = (a 1 + b 1 ) / 2 и т.д. Таким образом, k -е приближение вычисляется как

После каждой итерации отрезок, на котором расположен корень, уменьшается вдвое, а после k итераций в 2 k раз:

Прекратить итерационный процесс следует, когда будет достигнута заданная точность, т.е. при выполнении условия |x 0 – c k | < ε

Поскольку корень x 0 принадлежит отрезку [ a k , b k ], а c k – середина этого отрезка, то величина |x 0 – c k | всегда будет меньше половины длины от резка [ a k , b k ] (см. рис. 4):

Следовательно, условие |x 0 – c k | < ε будет выполнено, если

| b k – a k | < 2ε

Таким образом, итерационный процесс нужно продолжать до тех пор, пока не будет выполнено условие | b k – a k | < 2ε .

В отличие от большинства других методов уточнения, метод половинного деления сходится всегда, т.е. обладает безусловной сходимостью. Кроме этого он чрезвычайно прост, поскольку требует лишь вычисления значений функции f (x ) и, поэтому применим для решения любых уравнений.

Однако метод половинного деления довольно медленный. С каждым шагом погрешность приближенного значения уменьшается в два раза, т.е.

поэтому данный метод является методом с линейной сходимостью.

З а м е ч а н и е . Метод половинного деления не требует знания дополнительной информации о функции на всем интервале [ a , b ]. Например, не требуется, чтобы функция была дифференцируема. Даже для разрывных функций рассмотренный метод обладает гарантированной сходимостью. Если на этом интервале существует несколько корней уравнения, один из корней обязательно будет найден.

Метод хорд

Рассматриваемый метод так же, как и метод половинного деления, предназначен для уточнения корня на интервале [ a , b f (x ) принимает значения разных знаков. Очередное приближение в отличие от метода половинного деления берем не в середине отрезка, а в точке x , где пересекает ось абсцисс прямая линия (хорда), проведенная через точки А и В (рис. 5).

Рис. 5. Метод хорд.

Запишем уравнение прямой, проходящей через точки А и В :

Для точки пересечения прямой с осью абсцисс (x = x 0 , y = 0) получим уравнение

В качестве нового интервала для продолжения итерационного процесса выбираем тот из двух [ a , x 0 ] и [ x 0 , b ], на концах которого функция f (x ) принимает значения разных знаков. Для рассматриваемого случая (рис. 5) выбираем отрезок [ a , x 0 ], так как
f(a) × f(x 0) < 0 . Следующая итерация состоит в определении нового приближения x 1 как точки пересечения хорды AB 1 с осью абсцисс и т.д.

Заканчиваем процесс уточнения корня, когда расстояние между очередными приближениями станет меньше заданной точности, т.е.

x k +1 – x k < ε

З а м е ч а н и е . Метод хорд и метод половинного деления очень похожи. При этом второй их них в ряде случаев дает более быструю сходимость итерационного процесса. Оба метода не требуют знания дополнительной информации о функции на всем интервале [ a , b ]. Например, не требуется, чтобы функция была дифференцируема. Даже для разрывных функций рассмотренные методы обладают гарантированной сходимостью.

Метод Ньютона (метод касательных)

Метод Ньютона также предназначен для уточнения корня на интервале [ a , b ], на концах которого функция f (x ) принимает значения разных знаков. Но этот метод использует дополнительную информацию о функции f (x ). Как результат он обладают более быстрой сходимостью, но в то же время, применим для более узкого класса функций, и его сходимость не всегда гарантирована.

Отделяя корни функции, следует учесть, что применение метода Ньютона требует, чтобы функция была монотонна и дважды дифференцируема, причем вторая производная f’’(x) на этом интервале не должна менять знак.

Cходимость итерационной последовательности, получаемой в методе Ньютона, зависит от выбора начального приближения x 0 . В общем случае, если задан интервал [ a , b ], содержащий корень, и известно, что функция f (x ) монотонна на этом интервале, то в качестве начального приближения x 0 можно выбрать ту границу отрезка [ a , b ], где совпадают знаки функции f (x ) и второй производной f’’(x) . Такой выбор начального приближения гарантирует сходимость метода Ньютона при условии монотонности функции на отрезке локализации корня.

Пусть нам известно начальное приближение к корню x 0 . Проведем в этой точке касательную к кривой y = f (x ) (рис. 6). Эта касательная пересечет ось абсцисс в точке, которую будем рассматривать в качестве следующего приближения.

Министерство общего и профессионального образования

Стерлитамакский Государственный Педагогический Институт

кафедра информатики и вычислительной техники

КУРСОВАЯ РАБОТА

«Метод половинного деления в школьном курсе информатики»

Работу выполнили студенты 42 группы ФМФ: Дубовицкий Сергей и Волков Антон

Руководитель: доцент Хусаинова Г.Я.

Стерлитамак 2001

Введение

Метод половинного деления................................................................................................................................................... 4

Задача......................................................................................................................................................................................................... 4

Алгоритм................................................................................................................................................................................................... 6

Блок схема................................................................................................................................................................................................. 7

Заключение............................................................................................................................................................................................... 8

Литература................................................................................................................................................................................................. 9

Целью данной курсовой работы является раскрытие содержания темы «Метод половинного деления» и дальнейшее ее закрепление путем выполнения лабораторной работы и практических заданий.

Одной из главных задач в обучении является развитие творческих и исследовательских способностей учащихся. На уроках информатики применение компьютеров позволяет учащимся заниматься исследовательской работой при решении задач из различных областей (например, физические, математические, экономические задачи). При этом они должны научиться четко формулировать задачу, решать ее и оценивать полученный результат.

Использование новых информационных технологий позволяет решать некоторые задачи нетрадиционными способами, а также решать прикладные задачи, которые ранее не могли рассматриваться в силу сложности математического аппарата. Так, в школьном курсе математики учащиеся рассматривают уравнения, которые имеют точные решения. Однако в реальной практике решение большинства уравнений не может быть записано в явном виде. Их решение находится только приближенными методами. Ранее способы решения таких уравнений рассматривались после изучения одного из алгоритмических языков. Во-первых, разрабатывали алгоритм метода решения (например, итерации, половинного деления). Во-вторых, составляли программу и использовали ее для получения решения и его исследования. Труднее было при изучении темы "Моделирование", когда рассматривали задачи оптимизации. Задачи должны были быть довольно простыми, допускающими только одну поисковую переменную.

В школьном курсе информатики метод половинного деления изучается в 11 классе на 42 уроке при изучении раздела «Компьютерное моделирование», закрепляется тема на 43 уроке в виде Лабораторной работы.

Решение алгебраического уравнения. Для численного решения алгебраических уравнений существует множество способов. Среди самых известных можно назвать метод Ньютона, метод Хорд, и «всепобеждающий» метод Половинного Деления. Сразу оговоримся, что любой метод является приближенным, и по сути дела лишь уточняющим значение корня. Однако уточняющим до любой точности, заданной Нами.

Метод половинного деления или дихотомии (дихотомия - сопоставленность или противопоставленность двух частей целого) при нахождении корня уравнения f (x)=0 состоит в делении пополам отрезка [ a; b ] , где находится корень. Затем анализируется изменение знака функции на половинных отрезках, и одна из границ отрезка [ a; b ] переносится в его середину. Переносится та граница, со стороны которой функция на половине отрезка знака не меняет. Далее процесс повторяется. Итерации прекращаются при выполнении одного из условий: либо длина интервала [ a; b ] становится меньше заданной погрешности нахождения корня ε , либо функция попадает в полосу шума ε 1 – значение функции сравнимо с погрешностью расчетов.

Сначала поставим задачу. Дана монотонная, непрерывная функция f(x) , которая содержит корень на отрезке , где b>a . Определить корень с точностью ε , если известно, что f(a)*f(b)<0

Дано уравнение вида:

f(x)=0 ; (1)

необходимо найти удовлетворяющие ему значения x .

Итак, приступим к решению. Первым делом, определимся, что значит f(x)=0 . Посмотрите на рис.1. На нем изображен график некоей функции. В некоторых точках этот график пересекает ось абсцисс. Координаты x этих точек нам и нужно найти. Если вид уравнения простой или стандартный, например, квадратное уравнение или линейное, то применять численный метод здесь совершенно ни к чему. Но если уравнение у нас такое:

f(x)=x3-14x2+x+ex ; (2)

то ни в каком учебнике вы не найдете метода аналитического решения этого кошмара. Здесь и приходит на помощь непобедимый численный метод. Метод половинного деления. Из самого названия метода можно предположить, что нам понадобится что-то делить пополам.

Ученикам метод половинного деления можно преподнести в виде решения задачи.

Задача

Идет осада неприятельской крепости. На некотором расстоянии от нее установили новую пушку. Под каким углом к горизонту надо стрелять из этой пушки, чтобы попасть в заданный участок крепостной стены.

Над моделью этой задачи физики изрядно поработали. Оно и понятно: ведь многие научные задачи, как и эта, возникали прежде всего в военном деле. И решение этих задач почти всегда считалось приоритетным.

Какие же факторы принять за существенные в этой задаче? Поскольку речь идет о средневековье, то скорость снаряда и дальность полета невелики. Значит можно считать несущественным, что Земля круглая (помните обсуждение в параграфе 27), и пренебречь сопротивлением воздуха. Остается единственный фактор – сила земного притяжения. В этом случае, как вы знаете из физики, горизонтальное (х) и вертикальное (у) смещение снаряда за время t описывается формулами

,

где g – ускорение свободного падения, v – начальная скорость снаряда, α – угол наклона пушки к горизонту. Эти формулы задают математическую модель полета снаряда. Нас же интересует, на какой высоте окажется снаряд, пролетев расстояние S .

Впрочем, это нетрудно найти. Выразим время полета снаряда на расстояние S из первой формулы:

,

и подставим во вторую:

Следуя нашей задаче, нам требуется найти такое значение угла наклона α, чтобы снаряд, пролетев заданное расстояние S , попал на нужную высоту Н .

Математик тут бы сказал, что надо решить уравнение. Мы тоже будем решать, только приближенно и очень похоже на то, как делают настоящие артиллеристы. Они же поступают следующим образом: производят несколько выстрелов, беря цель «в вилку», т.е. одно попадание выше цели, а другое ниже. Затем делят пополам угол между этими выстрелами, и при стрельбе под таким углом снаряд ложится к цели намного ближе. Но если все же не попали, то новую «вилку» снова делят пополам и т.д.

Мы заранее можем указать «вилку» для угла: 0 и π/4 (мы надеемся, что вы помните какой угол имеет радианную меру π/4 и чему приближенно равно π ). А дальше будем делить пополам эту «вилку» и смотреть, куда попадает снаряд, пока не добьемся нужного результата.

Как же долго нам придется вести «пристрелку», чтобы получить угол α , с нужной точностью? Чтобы ответить на этот вопрос, отвлечемся от нашей задачи и сформулируем на чисто математическом языке, что и как мы находили.

Нам даны некоторая функция f(x) и отрезок , причем на концах этого отрезка эта функция принимает значения противоположных знаков. Если функция непрерывна, т.е. ее график – непрерывная линия, то ясно, что график функции пересекает ось абцисс в некоторой точке с отрезка , как показано на рисунке 1. Иными словами, f(c) =0 , т.е. с - корень уравнения f(x)=0 .

Как же предлагается находить этот корень? А вот так. Делим отрезок пополам, т.е. берем середину отрезка а+ b/2 . В этой точке вычисляем значение функции f(x) (рис. 2). Если это значение 0, то корень найден; если нет, то оно имеет тот же знак, что и значение на одном из концов отрезка . Тогда этот конец заменям точкой а+ b/2 . Новый отрезок тоже содержит корень уравнения f(x)=0 , поскольку на его концах функция f(x) снова имеет разные знаки. Однако этот отрезок в 2 раза короче предыдущего. И самое главное – с ним можно поступить точно так же . со следующим отрезком еще раз проделать то же самое и т.д. поскольку длина отрезка каждый раз уменьшается вдвое, мы можем получить отрезок сколь угодно малой длины, внутри которого содержится корень уравнения f(x)=0 . Например, если исходный отрезок был , т.е. имел длину 1 , то через десять шагов мы получим отрезок длиной

. Это означает, что концы отрезка дают нам приближенное значение корня с точностью, равной длине отрезка: левый конец отрезка – приближенное значение корня с недостатком, правый конец – приближенное значение корня с избытком.

Лабораторная работа

ЧИСЛЕННОЕ НАХОЖДЕНИЕ ИЗОЛИРОВАННОГО КОРНЯ НЕЛИНЕЙНОГО УРАВНЕНИЯ

Решение уравнений – алгебраических или трансцендентных – представляет собой одну из существенных задач прикладного анализа, потребность в которой возникает во многочисленных и самых разнообразных разделах физики, механики, техники и других областях.

Пусть дано уравнение

f (x ) = 0. (1)

Всякое число х *, обращающее функцию f (x ) в нуль, т.е. такое, при котором f (х *) = 0, называется корнем уравнения (1) или нулем функции f (x ).

Задача численного нахождения действительных корней уравнения (1) обычно состоит в приближенном нахождении корней, т.е. нахождении достаточно малых окрестностей рассматриваемой области, в которой содержится одно значение корня и, далее, вычислении корней с заданной степенью точности.

  1. Функция f (x ) непрерывна на отрезке [a, b ] вместе со своими производными 1-го и 2-го порядка;
  2. Значения f (x ) на концах отрезка имеют разные знаки (f (a ) * f (b ) < 0).

3. Первая и вторая производные f " (x ) и f "" (x ) сохраняют определенный знак на всем отрезке.

Условия 1) и 2) гарантируют, что на интервале [a, b ] находится хотя бы один корень, а из 3) следует, что f (x ) на данном интервале монотонна и поэтому корень будет единственным.

Задача нахождения корня уравнения f (x ) = 0 итерационным методом состоит из двух этапов:

1. отделение корней - отыскание приближенного значения корня или содержащего его отрезка;

2. уточнение приближенных корней - доведение их до заданной степени точности.

Процесс отделения корней начинается с установления знаков функции f (x ) в граничных x = a и x = b точках области ее существования.

Пример 1. Отделить корни уравнения:

x 3 – 6x + 2 = 0 (2)

Составим приблизительную схему:

х - ∞ - 3 - 1 + ∞
f (x ) + + + +

Следовательно, уравнение (2) имеет три действительных корня, лежащих в интервалах [-3, -1], и .

Приближенные значения корней (начальные приближения ) могут быть также известны из физического смысла задачи, из решения аналогичной задачи при других исходных данных, или могут быть найдены графическим способом.



В инженерной практике распространен графический способ определения приближенных корней.

Принимая во внимание, что действительные корни уравнения (1) - это точки пересечения графика функции f (x ) с осью абсцисс, достаточно построить график функции f (x ) и отметить точки пересечения f (x )с осью Ох, или отметить на оси Ох отрезки, содержащие по одному корню.

Пусть корень уравнения (1) изолирован на отрезке [a , b ]. Итерационный процесс уточнении начального приближения х 0 к точному решению состоит в последовательном получении последующего приближение из предыдущего (предыдущих). Каждый такой шаг называется итерацией . Применение того или иного метода зависит от имеющегося начального приближения х 0 к корню, существования и гладкости производных функции f (x ). В результате итераций находится последовательность приближенных значений корня х 1 , х 2 , ..., х n . Если эти значения с увеличением числа итераций n приближаются к истинному значению корня, то говорят, что итерационный процесс сходится .

В итерационных методах важно выбрать критерий окончания счета. Если функция f (x ) в рассматриваемой области изменяется медленно, т.е. производная по абсолютной величине меньше единицы, то итерационный процесс следует оканчивать по выполнению условия

| x k +1 – x k | < ε ,

где x k , x k +1 – последовательные приближения к корню, ε > 0 – заданная точность окончания итерационного процесса. Если же функция изменяется быстро, т.е.

| f ´ (x ) | ≥ 1, то итерационный процесс следует оканчивать по выполнению условия

| f (x k ) | < ε .

Метод половинного деления

Этот метод является одним из простейших итерационных методов вычисления вещественного корня уравнения (1) на отрезке [α , β ]. Его применяют, когда f (x ) непрерывна на [α , β ] и на концах этого отрезка принимает значения разных знаков, т.е.

f (α ) · f (β ) < 0.

Вычислительная схема метода . Отрезок [α , β ] делят пополам и если f ≠ 0, то выбирают ту из половин , , на концах которой функция f (x ) принимает значения разных знаков (корень находится в ней). Полученный отрезок опять делят пополам и повторяют описанные действия до тех пор, пока не получат корень с заданной точностью итерационного процесса. Процесс оканчивается по выполнению условия

| x k +1 – x k | < ε .

Число итераций k в методе половинного деления определяется по формуле

k .

Пример 1 . Методом половинного деления вычислить корень уравнения

х 3 + 3х 2 – 1 = 0 (2)

с точностью 0,01 на отрезке .

Проверяем условия применимости метода. Функция f (x ) является полиномом третьей степени (непрерывна) и f (0) · f (1) < 0.

Вычисляем последовательно приближения к корню и проверяем их по точности:

x 0 = 0 f (0)=1 [ –, + ]
x 1 = 1 |0 – 1| > 0,01 f (1)=3
x 2 = 0,5 |1 – 0,5|> 0,01 f (0,5)=0,125
x 3 = 0,75 |0,5 – 0,75|> 0,01 f (0,75)≈1,109
x 4 = 0,625 |0,5 – 0,625|> 0,01 f (0,625)≈0,416
x 5 = 0,5625 |0,5 – 0,5625|> 0,01 f (0,5625)≈0,127
x 6 = 0,53125 |0,5 – 0,53125|> 0,01 f (0,53125)≈0,0034
x 7 = 0,546875 |0,53125 – 0,546875|> 0,01 f (0, 546875)≈0,0608
x 8 = 0,5390625 |0,53125 – 0,5390625|≤ 0,01 f (0, 5390625)≈0,0284

Примем за уточненное значения корня величину


Метод половинного деления (другие названия: метод бисекций , метод дихотомии ) для решения уравнения f (x ) = 0 заключается в следующем . Пусть известно, что функция непрерывна и принимает на концах отрезка
[a , b ] значения разных знаков, тогда корень содержится в интервале (a , b ). Разделим интервал на две половины и дальше будем рассматривать ту половину, на концах которой функция принимает значения разных знаков. Этот новый отрезок снова делим на две равные части и выбираем из них ту, которая содержит корень. Этот процесс продолжается до тех пор, пока длина очередного отрезка не станет меньше требуемой величины погрешности. Более строгое изложение алгоритма метода половинного деления:

1) Вычислим x = (a + b )/2; вычислим f (x );

2) Если f (x ) = 0, то переходим к пункту 5;

3) Если f (x )∙ f (a ) < 0, то b = x , иначе a = x ;

4) Если |b a | > ε, переходим к пункту 1;

5) Выводим значение x ;

Пример 2.4. Уточнить методом бисекций с точностью до 0,01 корень уравнения (x – 1) 3 = 0, принадлежащий отрезку .

Решение в программе Excel :

1) В ячейках A 1:F 4 введем обозначения, начальные значения и формулы, как показано в таблице 2.3.

2) Каждую формулу скопируем в нижние ячейки маркером заполнения до десятой строки, т.е. B 4 - до B 10, C 4 - до C 10, D 3 - до D 10, E 4 - до E 10, F 3 - до F 10.

Таблица 2.3

A B C D E F
f(a)= =(1-B3)^3
k a x f(x) b b-a
0,95 =(B3+E3)/2 =(1-C3)^3 1,1 =E3-B3
=ЕСЛИ(D3=0;C3; ЕСЛИ(C$1*D3<0;B3;C3)) =ЕСЛИ(C$1*D3>0; E3;C3)

Результаты расчетов приведены в табл. 2.4. В столбце F проверяем значения длины интервала b a . Если значение меньше чем 0,01, то в данной строке найдено приближенное значение корня с заданной погрешностью. Потребовалось 5 итераций для достижения требуемой точности. Приближенное значение корня с точностью до 0,01 после округления до трех знаков равно 1,0015625 ≈ 1,00.

Таблица 2.4

A B C D E F
f(a)= 0,000125
k a x f(x) b b-a
0,95 1,025 -2E-05 1,1 0,15
0,95 0,9875 2E-06 1,025 0,075
0,9875 1,00625 -2E-07 1,025 0,0375
0,9875 0,996875 3,1E-08 1,00625 0,0187
0,996875 1,0015625 -4E-09 1,00625 0,0094
0,996875 0,9992188 4,8E-10 1,0015625 0,0047
0,99921875 1,0003906 -6E-11 1,0015625 0,0023
0,99921875 0,9998047 7,5E-12 1,000390625 0,0012

Приведенный алгоритм учитывает возможный случай «попадания в корень», т.е. равенство f (x ) нулю на очередном этапе. Если в примере 2.3 взять отрезок , то на первом же шаге попадаем в корень x = 1. Действительно, запишем в ячейке B 3 значение 0,9. Тогда таблица результатов примет вид 2.5 (приведены только 2 итерации).

Таблица 2.5

A B C D E F
f(a)= 0,001
k a x f(x) b b-a
0,9 1,1 0,2

Создадим в программе Excel пользовательские функции f(x) и bisect(a, b, eps) для решения уравнения методом половинного деления, пользуясь встроенным языком Visual Basic . Их описания приведены ниже:

Function f(Byval x)

Function bisect(a, b, eps)

1 x = (a + b) / 2

If f(x) = 0 Then GoTo 5

If f(x) * f(a) < 0 Then

If Abs(a - b) > eps Then GoTo 1

Функция f(x) определяет левую часть уравнения, а функция
bisect(a, b, eps) вычисляет методом половинного деления корень уравнения f (x ) = 0. Обратим внимание на то, что в функции bisect(a, b, eps) используется обращение к функции f(x). Приведем алгоритм создания пользователькой функции:

1) Выполним команду меню «Сервис - Макрос - Редактор Visual Basic ». Откроется окно «Microsoft Visual Basic ». Если в данном файле программы Excel ещё не были созданы макросы или пользовательские функции или процедуры, это окно будет иметь вид, изображенный на рис.2.4.

2) Выполним команду меню «Insert - Module» и вводим тексты программ-функции, как показано на рис 2.5.

Теперь в ячейках листа программы Excel можно в формулах использовать созданные функции. Например, введем в ячейку D 18 формулу

Bisect(0,95;1;0,00001),

то получим значение 0,999993896.

Чтобы решить другое уравнение (с другой левой частью) нужно перейти в окно редактора с помощью команды «Сервис - Макрос - Редактор Visual Basic » и просто переписать описание функции f(x). Например, найдем с точностью до 0,001 корень уравнения sin5x + x 2 – 1 = 0, принадлежащий интервалу (0,4; 0,5). Для этого изменим описание функции

на новое описание

f = Sin(5 * x) + x ^ 2 - 1

Тогда в ячейке D 18 получим значение 0,441009521 (сравните этот результат со значением корня из интервала (0,4; 0,5), найденным в примере 2.3!).

Для решения уравнения методом половинного деления в программе Mathcad создадим подпрограмму-функцию bisec (f , a , b , ε), где:

f - имя функции, соответствующее левой части уравнения f (x ) = 0;

a , b - левый и правый концы отрезка [a , b ];

ε - точность приближенного значения корня.

Решение примера в программе Mathcad :

1) Запускаем программу Mathcad. Введем определение функции bisec (f , a , b , ε). Для этого с помощью клавиатуры и панели инструментов «Греческие символы» набираем bisec (f , a , b , ε):=. После знака присваивания «:=» на панели инструментов «Программирование» указателем мыши щелкаем левой кнопкой «Add line». После знака присваивания появится вертикальная линия. Далее вводим текст программы, который приведен ниже, используя панель инструментов «Программирование» для ввода знака «←», оператора цикла while , оператора break и условного оператора if otherwise .

2) Введем определение функции f (x ):=sin(5*x)+x^2–1, а затем вычислим значение корня с помощью функции bisec при заданных значениях:
bisec (f , –0.8,–0.7,0.0001)=. После знака «=» автоматически появится вычисленное программой значение корня –0,7266601563. Аналогично вычислим остальные корни.

Ниже приведен лист Mathcad с определением функции bisec (f , a , b , ε) и расчетами:

Приведем программу на языке C ++ для решения уравнения f (x ) = 0 методом половинного деления:

#include

#include

double f(double x);

typedef double (*PF)(double);

double bisec(PF f,double a, double b,double eps);

double a, b, x, eps;PF pf;

cout << "\n a = "; cin >> a;

cout << "\n b = "; cin >> b;

cout << "\n eps = "; cin >> eps;

x = bisec(pf,a,b,eps); cout << "\n x = " << x;

cout << "\n Press any key & Enter "; cin >> a;

double f(double x){

r = sin(5*x)+x*x-1;

double bisec(PF f, double a, double b,double eps){

do{ x = (a + b)/2;

if (f(x) == 0) break;

if (f(x)*f(a)<0) b = x;

}while (fabs(b-a) > eps);

В программе функция f (x ) определена для решения уравнения

sin5x + x 2 – 1 = 0

из примера 2.3. Результат работы программы для определения корня из интервала (0,4; 0,5) с точностью 0,00001 представлен ниже (экран компьютера):

Press any key & Enter

Последняя строка нужна для организации паузы для просмотра результата.


ВВЕДЕНИЕ 4

1. ПОСТАНОВКА ЗАДАЧИ 5

2. ВЫБОР И ОПИСАНИЕ МЕТОДОВ РЕШЕНИЯ 6

2.1. МЕТОД ПОЛОВИННОГО ДЕЛЕНИЯ 6

2.2. МЕТОД ХОРД 9

2.3. МЕТОД НЬЮТОНА (МЕТОД КАСАТЕЛЬНЫХ) 12

3 .СООТВЕТСТВИЕ МЕЖДУ ПЕРЕМЕННЫМИ, ПРИНЯТЫМИ ПРИ ОПИСАНИИ ЗАДАЧИ И В ПРОГРАМЕ 15

4. СТРУКТУРНАЯ СХЕМА ПРОГРАММ И ЕЕ ОПИСАНИЕ 18

5. ЛИСТИНГ ПРОГРАМЫ 26

6. КОНТРОЛЬНЫЙ ПРИМЕР И АНАЛИЗ РЕЗУЛЬТАТА 27

7. ИНСТРУКЦИЯ ПОЛЬЗОВАТЕЛЯ 32

ЗАКЛЮЧЕНИЕ 33

СПИСОК ЛИТЕРАТУРЫ 34

ПРИЛОЖЕНИЯ 35

ПРИЛОЖЕНИЕ А 36

ПРИЛОЖЕНИЕ Б. 38

ПРИЛОЖЕНИЕ Д. 39

ВВЕДЕНИЕ

Паскаль − один из наиболее распространенных процедурно-ориентированных языков программирования 80 - 90-х годов, имеет свою достаточно интересную историю, начало которой положило объявление в 1965 г. конкурса по созданию нового языка программирования - преемника Алгола - 60. Участие в конкурсе принял швейцарский ученый Николаус Вирт, который работал на факультете информатики Стэндфордского университета. Проект, предложенный им, был отвергнут комиссией в 1967 г. Но Вирт не прекратил работу. Вернувшись в Швейцарию, совместно с сотрудниками Швейцарского федерального института технологии в Цюрихе, он уже в 1968 г. разработал новую версию языка Паскаль, названного так в честь великого французского математика и механика Блеза Паскаля, создавшего в 1642 г. первую счетную машину. В 1971 г. Н. Вирт выпустил описание своего языка, а в 1975 г. было разработано руководство для пользователей версии Паскаля, которая практически легла в основу стандарта языка. Но стандарт языка появился только в 1982 г.

Предназначенный для обучения, язык оказался очень простым и одновременно строгим. Однако вскоре выяснилось, что он также является достаточно эффективным в самых различных приложениях. Pascal поддерживает самые современные методологии проектирования программ (нисходящее, модульное проектирование, структурное программирование). В связи с этим появились многочисленные реализации языка для разных машинных архитектур и наиболее удачной и популярной оказалась разработка фирмы Borland International для персональных IBM - совместимых ЭВМ. Эта реализация языка получила название Turbo Pascal (Турбо Паскаль) и имеет уже несколько версий.

Turbo Pascal представляет собой систему программирования, включающую в себя текстовый редактор, компилятор, компоновщик, загрузчик, отладчик, файловую систему, системную библиотеку, справочную систему. Все эти компоненты объединены в интегрированную среду с многооконным интерфейсом и развитой системой меню, что обеспечивает высокую производительность труда программиста при создании программ производственного, научного и коммерческого назначения.

1. ПОСТАНОВКА ЗАДАЧИ

Написать программу на языке программирования Pascal, выполняющую решение нелинейного уравнения. Результат работы программы должен выводиться на экран и в файл.

В программе реализовать следующее меню:

1-Ввести данные из файла

2-Ввести данные с клавиатуры

Отладить программу на уравнении f(x)=x 2 -x-6 с точностью 0,001

2. ВЫБОР И ОПИСАНИЕ МЕТОДОВ РЕШЕНИЯ

Процесс нахождения приближенного значения корней уравнения можно подразделить на два этапа 1) отделение корней; 2) уточнение корней до заданной степени точности. Корень ξ считается отделённым на отрезке , если на этом отрезке уравнение

: метод половинного деления, Ньютона

2.1. МЕТОД ПОЛОВИННОГО ДЕЛЕНИЯ

Пусть дано уравнение f (x ) = 0, где f (х ) – непрерывная функция. Требуется найти корень этого уравнения ξ с точностью до ε, где е – некоторое положительное достаточно малое число.

Будем считать, что корень ξ отделен и находится на отрезке [а , b ], т. е. имеет место неравенство а ≤ ξ ≤ b . Числа а и b – приближенные значения корня ξ соответственно с недостатком и с избытком. Погрешность этих приближений не превышает длины отрезка b а . Если b а ≤ε, то необходимая точность вычислений достигнута, и за приближенное значение корня ξ можно принять либо а , либо b . Но если b а > ε, то требуемая точность вычислений не достигнута и необходимо сузить интервалов котором находится корень ξ, т. е. подобрать такие числа а и b , чтобы выполнялись неравенства a b и . При вычисления следует прекратить и за приближенное значение корня с точностью до ε принять либо а , либо b . Следует отметить, что значение корня будет более точным, когда за приближенное значение корня приняты не концы отрезка а и b , а середина этого отрезка, т.е. . Погрешность в этом случае не превышает величины
.

Метод проб . Пусть дано уравнение f (x ) = 0 [f (x ) – непрерывная функция] и корень ε отделен на отрезке [а , b ], т. е. f (а ) ∙ f (b ) b – а > ε. Требуется найти значение корня ξ с точностью до ε (рис. 2.1)

Принцип решения уравнения типа y=f(x) методом проб

Принцип решения уравнения типа y=f(x) методом половинного деления

На отрезке [a , b ] выберем произвольным образом точку a 1 , которая разделит его на два отрезка и . Из этих двух отрезков следует выбрать тот, на концах которого функция принимает значения, противоположные по знаку. В нашем примере f (а ) ∙ f (a 1) > 0, f (a 1) ∙ f (b ) a 1 ,b ]. Затем на этом суженом отрезке опять произвольным образом возьмем точку а 2 и найдем знаки произведений f (a 1) ∙ f (a 2) и f (a 2) ∙ f (b ). Так как f (a 2)× f (b ) a 2 , b ]. Этот процесс продолжаем до тех пор, пока длина отрезка, на котором находится корень, не станет меньше ε. Корень ξ получим как среднее арифметическое концов найденного отрезка, причем погрешность корня не превышает ε/2.

Метод проб в таком виде на ЭВМ не применяется. Для составления программ и расчетов на ЭВM метод проб применяется в виде так называемого метода половинного деления .

Пусть корень ξ уравнения f (х ) = 0 отделен и находится на отрезке [a , b ], т.е. f (a ) ∙ f (b ) b – а > ε [здесь f (х) – непрерывная функция]. Как и ранее, возьмем на отрезке [a , b ] промежуточную точку, однако не произвольным образом, а так, чтобы она являлась серединой отрезка [a , b ], т. е. с = (а + b )/2. Тогда отрезок [a , b ] точкой с разделится на два равных отрезка [а , с ] и [с , b ], длина которых равна (b а )/2 (рис. 2.2). Если f (с ) = 0, то с – точный корень уравнения f (х ) = 0. Если же f (с ) ≠ 0, то из двух образовавшихся отрезков [a , с ] и [с , b ] выберем тот, на концах которого функция f (х) принимает значения противоположных знаков; обозначим его [a l , b 1 ]. Затем отрезок [a l , b 1 ] также делим пополам и проводим те же рассуждения. Получим отрезок [а 2 , b 2 ], длина которого равна (b а )/2 2 . Процесс деления отрезка пополам производим до тех пор, когда на каком-то n-м этапе либо середина отрезка будет корнем уравнения (случай, весьма редко встречающийся на практике), либо будет получен отрезок [a n , b n ] такой, что b n – а n = (b – а)/2 n ≤ ε и а n ≤ ξ ≤ b n (число n указывает на количество проведенных делений). Числа а n и b n – корни уравнения f (х ) = 0 с точностью до ε. За приближенное значение корня, как указывалось, выше, следует взять ξ = (a n + b n)/2, причем погрешность не превышает (b а )/2 n +1 .

2.2. МЕТОД ХОРД

Метод хорд является одним из распространенных методов решения алгебраических и трансцендентных уравнений. В литературе он также встречается под названиями «метода ложного положения» (regula falsi), «метода линейного интерполирования» и «метода пропорциональных частей».

Пусть дано уравнение f(х) = 0, где f (х) – непрерывная функция, имеющая в интервале [а, b] производные первого и второго порядков. Корень считается отделенным и находится на отрезке [а, b], т.е. f(a)-f (b)

Идея метода хорд состоит в том, что на достаточно малом промежутке [а, b] дуга кривой у = f (x) заменяется стягивающей ее хордой. В качестве приближенного значения корня принимается точка пересечения хорды с осью Ох.

Ранее мы рассмотрели четыре случая расположения дуги кривой, учитывая значения первой и второй производных.

Рассмотрим случаи, когда первая и вторая производные имеют одинаковые знаки, т. е, f"(х) ∙ f"" (х) > 0.

Пусть, например, f(a) 0, f"(х) > 0, f""(х) > 0 (рис. 3.18, а). График функции проходит через точки А 0 (a; f(a)), В(b; f(b))- Искомый корень уравнения f(х) = 0 есть абсцисса точки пересечения графика функции у = f(х) с осью Ох. Эта точка нам неизвестна, но вместо нее мы возьмем точку x 1 пересечения хорды А и В с осью Ох. Это и будет приближенное значение корня.

Уравнение хорды, проходящей через точки А 0 и В, имеет вид

Найдем значение х = х 1 , для которого у = 0:

Эта формула носит название формулы метода хорд. Теперь корень ξ находится внутри отрезка . Если значение корня х 1 нас не устраивает, то его можно уточнить, применяя метод хорд к отрезку [х 1 , b].

Соединим точку А 1 (x 1 ; f (x 1) с точкой В (b; f (b)) и найдем х 2 – точку пересечения хорды А 1 В с осью Ох:

Продолжая этот процесс, находим

Процесс продолжается до тех пор, пока мы не получим приближенный корень с заданной степенью точности.

По приведенным выше формулам вычисляются корни и для случая, когда f(а) > 0, f(b)

Теперь рассмотрим случаи, когда первая и вторая производные имею разные знаки, т.е. f"(x) ∙ f"(x)

Пусть, например, f(a) > 0, f(b) 0 (рис. 3.19, а). Соединим точки A (a; f (а)) и В 0 (b; f (b)) и запишем уравнение хорды, проходящей через А и B 0:

Найдем х 1 , как точку пересечения хорды с осью Ох, полагая у = 0:

Корень ξ теперь заключен внутри отрезка . Применяя меч од хорд к отрезку [а, x 1 ], получимМетоды решения нелинейного уравненияЛабораторная работа >> Математика

Студентов, изучающих предмет «Численные методы» и выполняющих лабораторные работы... В методических указаниях рассмотрены ряд методов нахождения корней нелинейного уравнения и... Поэтому большое значение имеют методы приближенного решение уравнения с заданной...

  • Методы компьютерных вычислений и их приложение к физическим задачам

    Методичка >> Информатика

    2) Умножение и деление приближенных чисел Очевидно, ... Следовательно, при умножении и делении приближенных чисел необходимо принимать... метод Гаусса-Кристоффеля (вычисление несобственных интегралов) и метод Маркова. Метод прямоугольников. Различают метод ...

  • Выбор редакции
    Денежная единица РФ "...Статья 27. Официальной денежной единицей (валютой) Российской Федерации является рубль. Один рубль состоит из 100...

    Техника "100 желаний" Научиться исполнять желания может каждый. Для этого нужно всего лишь договориться со своим подсознанием! А как это...

    Получив атеистическое воспитание, я долгое время не испытывал интереса, а уж тем более священного трепета от религиозных святынь да...

    Скакать во сне на белой лошади - прекрасный знак. В первую очередь он сулит Вам прочность дружеских связей и радость встреч с товарищами...
    Заранее говорю, никогда не пробовала делать с другим сыром, только с твердыми сортами. В данном рецепте я использовала остатки трех...
    Будьте чуткими к изменениям настроения любимых людей! Помните: мы получаем от мира ровно то, что ему даем. Хотите, чтобы окружающие...
    Татуировка - практически такое же древнее явление, как и существование человечества. Тату были обнаружены даже на телах мумий, найденных...
    Святой Спиридон Тримифунтский - очень почитаемый подвижник во всем христианском мире. К его мощам, на острове Корфу в Греции, постоянно...
    Праздники, кто же их не любит? А что же легло в основу праздника День Народного Единства в России ? Праздник единства подчеркивает: какой...