Положение центра описанной окружности треугольника. Окружность, описанная около треугольника


Доказательства теорем о свойствах описанной около треугольника окружности

Серединный перпендикуляр к отрезку

Определение 1 . Серединным перпендикуляром к отрезку называют, прямую, перпендикулярную к этому отрезку и проходящую через его середину (рис. 1).

Теорема 1 . Каждая точка серединного перпендикуляра к отрезку находится на одном и том же расстоянии от концов этого отрезка.

Доказательство . Рассмотрим произвольную точку D , лежащую на серединном перпендикуляре к отрезку AB (рис.2), и докажем, что треугольники ADC и BDC равны .

Действительно, эти треугольники являются прямоугольными треугольниками, у которых катеты AC и BC равны, а катет DC является общим. Из равенства треугольников ADC и BDC вытекает равенство отрезков AD и DB . Теорема 1 доказана.

Теорема 2 (Обратная к теореме 1) . Если точка находится на одном и том же расстоянии от концов отрезка, то она лежит на серединном перпендикуляре к этому отрезку.

Доказательство . Докажем теорему 2 методом «от противного». С этой целью предположим, что некоторая точка E находится на одном и том же расстоянии от концов отрезка, но не лежит на серединном перпендикуляре к этому отрезку. Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точки E и A лежат по разные стороны от серединного перпендикуляра (рис.3). В этом случае отрезок EA пересекает серединный перпендикуляр в некоторой точке, которую мы обозначим буквой D .

Докажем, что отрезок AE длиннее отрезка EB . Действительно,

Таким образом, в случае, когда точки E и A лежат по разные стороны от серединного перпендикуляра, мы получили противоречие.

Теперь рассмотрим случай, когда точки E и A лежат по одну сторону от серединного перпендикуляра (рис.4). Докажем, что отрезок EB длиннее отрезка AE . Действительно,

Полученное противоречие и завершает доказательство теоремы 2

Окружность, описанная около треугольника

Определение 2 . Окружностью, описанной около треугольника , называют окружность, проходящую через все три вершины треугольника (рис.5). В этом случае треугольник называют треугольником, вписанным в окружность, или вписанным треугольником .

Свойства описанной около треугольника окружности. Теорема синусов

Фигура Рисунок Свойство
Серединные перпендикуляры
к сторонам треугольника
пересекаются в одной точке .

Центр описанной около остроугольного треугольника окружности Центр описанной около остроугольного внутри треугольника.
Центр описанной около прямоугольного треугольника окружности Центром описанной около прямоугольного середина гипотенузы .
Центр описанной около тупоугольного треугольника окружности Центр описанной около тупоугольного треугольника окружности лежит вне треугольника.

,

Площадь треугольника

S = 2R 2 sin A sin B sin C ,

Радиус описанной окружности

Для любого треугольника справедливо равенство:

Серединные перпендикуляры к сторонам треугольника

Все серединные перпендикуляры , проведённые к сторонам произвольного треугольника, пересекаются в одной точке .

Окружность, описанная около треугольника

Около любого треугольника можно описать окружность . Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Центр описанной около остроугольного треугольника окружности

Центр описанной около остроугольного треугольника окружности лежит внутри треугольника.

Центр описанной около прямоугольного треугольника окружности

Центром описанной около прямоугольного треугольника окружности является середина гипотенузы .

Центр описанной около тупоугольного треугольника окружности

Центр описанной около тупоугольного треугольника окружности лежит вне треугольника.

Для любого треугольника справедливы равенства (теорема синусов):

,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Площадь треугольника

Для любого треугольника справедливо равенство:

S = 2R 2 sin A sin B sin C ,

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Радиус описанной окружности

Для любого треугольника справедливо равенство:

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

Доказательства теорем о свойствах описанной около треугольника окружности

Теорема 3 . Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Доказательство . Рассмотрим два серединных перпендикуляра, проведённых к сторонам AC и AB треугольника ABC , и обозначим точку их пересечения буквой O (рис. 6).

Поскольку точка O лежит на серединном перпендикуляре к отрезку AC , то в силу теоремы 1 справедливо равенство:

Поскольку точка O лежит на серединном перпендикуляре к отрезку AB , то в силу теоремы 1 справедливо равенство:

Следовательно, справедливо равенство:

откуда с помощью теоремы 2 заключаем, что точка O лежит на серединном перпендикуляре к отрезку BC. Таким образом, все три серединных перпендикуляра проходят через одну и ту же точку, что и требовалось доказать.

Следствие . Около любого треугольника можно описать окружность . Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Доказательство . Рассмотрим точку O , в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника ABC (рис. 6).

При доказательстве теоремы 3 было получено равенство:

из которого вытекает, что окружность с центром в точке O и радиусами OA , OB , OC проходит через все три вершины треугольника ABC , что и требовалось доказать.

Тема «Вписанные и описанные окружности в треугольниках» является одной из самых сложных в курсе геометрии. На уроках ей уделяется очень мало времени.

Геометрические задачи этой темы включаются во вторую часть экзаменационной работы ЕГЭ за курс средней школы. Для успешного выполнения этих заданий необходимы твердые знания основных геометрических фактов и некоторый опыт в решении геометрических задач.
Для каждого треугольника существует только одна описанная окружность. Это такая окружность, на которой лежат все три вершины треугольника с заданными параметрами. Найти ее радиус может понадобиться не только на уроке геометрии. С этим приходится постоянно сталкиваться проектировщикам, закройщикам, слесарям и представителям многих других профессий. Для того, чтобы найти ее радиус, необходимо знать параметры треугольника и его свойства. Центр описанной окружности находится в точке пересечения серединных перпендикуляров треугольника.
Предлагаю вашему вниманию все формулы нахождения радиуса описанной окружности и не только треугольника. Формулы для вписанной окружности можно посмотреть .

a, b. с - стороны треугольника,


α - угол, лежащий против стороны a,
S - площадь треугольника ,

p - полупериметр.

Тогда для нахождения радиуса (R ) описанной окружности используют формулы:

В свою очередь площадь треугольника можно вычислить по одной из следующих формул:

А вот еще несколько формул.

1. Радиус описанной окружности около правильного треугольника. Если a сторона треугольника, то

2. Радиус описанной окружности около равнобедренного треугольника. Пусть a, b - стороны треугольника, тогда

Тема «Вписанные и описанные окружности в треугольниках» является одной из самых сложных в курсе геометрии. На уроках ей уделяется очень мало времени.

Геометрические задачи этой темы включаются во вторую часть экзаменационной работы ЕГЭ за курс средней школы. Для успешного выполнения этих заданий необходимы твердые знания основных геометрических фактов и некоторый опыт в решении геометрических задач.
Для каждого треугольника существует только одна описанная окружность. Это такая окружность, на которой лежат все три вершины треугольника с заданными параметрами. Найти ее радиус может понадобиться не только на уроке геометрии. С этим приходится постоянно сталкиваться проектировщикам, закройщикам, слесарям и представителям многих других профессий. Для того, чтобы найти ее радиус, необходимо знать параметры треугольника и его свойства. Центр описанной окружности находится в точке пересечения серединных перпендикуляров треугольника.
Предлагаю вашему вниманию все формулы нахождения радиуса описанной окружности и не только треугольника. Формулы для вписанной окружности можно посмотреть .

a, b. с - стороны треугольника,


α - угол, лежащий против стороны a,
S - площадь треугольника ,

p - полупериметр.

Тогда для нахождения радиуса (R ) описанной окружности используют формулы:

В свою очередь площадь треугольника можно вычислить по одной из следующих формул:

А вот еще несколько формул.

1. Радиус описанной окружности около правильного треугольника. Если a сторона треугольника, то

2. Радиус описанной окружности около равнобедренного треугольника. Пусть a, b - стороны треугольника, тогда

Цели урока:

  • Углубить знания по теме «Описанная окружности в треугольниках»


Задачи урока:

  • Систематизировать знания по этой теме
  • Подготовиться к решению задач повышенной сложности.

План урока:

  1. Введение.
  2. Теоретическая часть.
  3. Для треугольника.
  4. Практическая часть.

Введение.

Тема «Вписанные и описанные окружности в треугольниках» является одной из самых сложных в курсе геометрии. На уроках ей уделяется очень мало времени.

Геометрические задачи этой темы включаются во вторую часть экзаменационной работы ЕГЭ за курс средней школы.
Для успешного выполнения этих заданий необходимы твердые знания основных геометрических фактов и некоторый опыт в решении геометрических задач.

Теоретическая часть.

Описанная окружность многоугольника - окружность, содержащая все вершины многоугольника. Центром является точка (принято обозначать O) пересечения серединных перпендикуляров к сторонам многоугольника.

Свойства.

Центр описанной окружности выпуклого n-угольника лежит в точке пересечения серединных перпендикуляров к его сторонам. Как следствие: если рядом с n-угольником описана окружность, то все серединные перпендикуляры к его сторонам пересекаются в одной точке (центре окружности).
Вокруг любого правильного многоугольника можно описать окружность.

Для треугольника.

Окружность называется описанной около треугольника, если она проходит через все его вершины.

Вокруг любого треугольника можно описать окружность, притом только одну . Её центром будет являться точка пересечения серединных перпендикуляров.

У остроугольного треугольника центр описанной окружности лежит внутри , у тупоугольного - вне треугольника , у прямоугольного - на середине гипотенузы .

Радиус описанной окружности может быть найден по формулам:

Где:
a,b,c - стороны треугольника,
α - угол, лежащий против стороны a,
S - площадь треугольника.


Доказать:

т.О - точка пересечения серединных перпендикуляров к сторонам ΔABC

Доказательство:

  1. ΔAОC - равнобедренный, т.к. ОА=ОС (как радиусы)
  2. ΔAОC - равнобедренный, перпендикуляр OD - медиана и высота, т.е. т.О лежит на серединном перпендикуляре к стороне АС
  3. Аналогично доказывается, что т.О лежит на серединных перпендикулярах к сторонам АВ и ВС

Что и требовалось доказать.

Замечание.

Прямую, проходящую через середину отрезка перпендикулярно к нему, часто называют серединным перпендикуляром. В связи с этим иногда говорят, что центр окружности, описанной около треугольника, лежит на пересечении серединных перпендикуляров к сторонам треугольника.

Предмети > Математика > Математика 7 класс

Окружность – геометрическая фигура, знакомство с которой происходит еще в дошкольном возрасте. Позднее вы узнаете ее свойства и характерные особенности. Если вершины произвольного многоугольника лежат на окружности, а сама фигура располагается внутри нее, то перед вами геометрическая фигура, вписанная в окружность.

Понятие радиус характеризует расстояние от любой точки окружности до ее центра. Последний располагается в месте пересечения перпендикуляров к каждой из сторон многоугольника. Определившись с терминологией, рассмотрим выражения, которые помогут найти радиус для любого вида многоугольника.

Как найти радиус описанной окружности – правильный многоугольник

Данная фигура может иметь любое количество вершин, но все ее стороны равны между собой. Для нахождения радиуса окружности, в которую поместили правильный многоугольник, достаточно знать число сторон фигуры и их длину.
R = b/2sin(180°/n),
b – длина стороны,
n – число вершин (или сторон) фигуры.
Приведенное соотношение для случая шестиугольника будет иметь следующий вид:
R = b/2sin(180°/6) = b/2sin30°,
R = b.

Как найти радиус описанной окружности – прямоугольник

Когда в окружности располагается четырехугольник, имеющий 2 пары параллельно проходящих сторон и внутренние углы 90°, точка пересечения диагоналей многоугольника и будет ее центром. Воспользовавшись соотношением Пифагора, а также свойствами прямоугольника, получаем необходимые для нахождения радиуса выражения:
R = (√m 2 + l 2)/2,
R = d/2,
m, l – стороны прямоугольника,
d – его диагональ.

Как найти радиус описанной окружности – квадрат

Помещаем в окружность квадрат. Последний является правильным многоугольником, имеющим 4 стороны. Т.к. квадрат является частным случаем прямоугольника, то его диагонали также в точке своего пересечения делятся пополам.
R = (√m 2 + l 2)/2 = (√m 2 + m 2)/2 = m√2/2 = m/√2,
R = d/2,
m – сторона квадрата,
d – его диагональ.

Как найти радиус описанной окружности – равнобокая трапеция

Если в окружность поместили трапецию, то для определения радиуса потребуется знание длин ее сторон и диагонали.
R = m*l*d/4√p(p – m)*(p – l)*(p – d),
p = (m + l + d)/2,
m, l – стороны трапеции,
d – ее диагональ.


Как найти радиус описанной окружности – треугольник

Произвольный треугольник

  • Чтобы определить радиус окружности, описывающей треугольник, достаточно знать величину его сторон.
    R = m*l*k/4√p(p – m)*(p – l)*(p – k),
    p = (m + l + k)/2,
    m, l, k – стороны треугольника.
  • Если известна длина стороны и градусная мера угла ей противолежащего, то радиус определяется следующим образом:
    Для треугольника MLK
    R = m/2sinM = l/2sinL = k/2sinK,

    M, L, K – его углы (вершины).
  • При наличии площади фигуры также можно вычислить радиус окружности, в которую она помещена:
    R = m*l*k/4S,
    m, l, k – стороны треугольника,
    S – его площадь.

Равнобедренный треугольник

Если треугольник равнобедренный, то 2 его стороны равны между собой. При описывании такой фигуры радиус можно найти по такому соотношению:
R = m*l*k/4√p(p – m)*(p – l)*(p – k), но m = l
R = m 2 /√(4m 2 – k 2),
m, k – стороны треугольника.

Прямоугольный треугольник

Если один из углов треугольника прямой, а около фигуры описана окружность, то для определения длины радиуса последней потребуется наличие известных сторон треугольника.
R = (√m 2 + l 2)/2 = k/2,
m, l – катеты,
k – гипотенуза.


Выбор редакции
Денежная единица РФ "...Статья 27. Официальной денежной единицей (валютой) Российской Федерации является рубль. Один рубль состоит из 100...

Техника "100 желаний" Научиться исполнять желания может каждый. Для этого нужно всего лишь договориться со своим подсознанием! А как это...

Получив атеистическое воспитание, я долгое время не испытывал интереса, а уж тем более священного трепета от религиозных святынь да...

Скакать во сне на белой лошади - прекрасный знак. В первую очередь он сулит Вам прочность дружеских связей и радость встреч с товарищами...
Заранее говорю, никогда не пробовала делать с другим сыром, только с твердыми сортами. В данном рецепте я использовала остатки трех...
Будьте чуткими к изменениям настроения любимых людей! Помните: мы получаем от мира ровно то, что ему даем. Хотите, чтобы окружающие...
Татуировка - практически такое же древнее явление, как и существование человечества. Тату были обнаружены даже на телах мумий, найденных...
Святой Спиридон Тримифунтский - очень почитаемый подвижник во всем христианском мире. К его мощам, на острове Корфу в Греции, постоянно...
Праздники, кто же их не любит? А что же легло в основу праздника День Народного Единства в России ? Праздник единства подчеркивает: какой...